Internship Assessment Task for BaggageAI.

Overview

BaggageAI Internship Task

Problem Statement:

  • You are given two sets of images:- background and threat objects. Background images are the background x-ray images of baggage that gets generated after passing through a X-ray machine at airport. Threat images are the x-ray images of threats that are prohibited at airport while travelling.

  • Your task is to cut the threat objects, scale it down, rotate with 45 degree and paste it into the background images using image processing techniques in python.

  • Threat objects should be translucent, means it should not look like that it is cut pasted. It should look like that the threat was already there in the background images. Translucent means the threat objects should have shades of background where it is pasted.

  • Threat should not go outside the boundary of the baggage. ** difficult **

  • If there is any background of threat objects, then it should not be cut pasted into the background images, which means while cutting the threat objects, the boundary of a threat object should be tight-bound.

Solution:

Libraries Used :

  • OpenCV
  • numpy
  • glob
  • os
  • matplotlib
  • itertools

Methodology

To start with, we read the threat images, background images using the read_images function. For each threat image, it is first converted to grayscale and then dilated with 5x5 matrix of ones with iteration 2. Thi sis done to smooth out the image since the bright area around the threat image gets dilated around the background. Next, we create a mask for the threat object using a threshold value for white and the cv2 function inRange(). Then, the threat image is cropped to a square using a threshold value using the form_square() function. The images are padded dynamically so that when the threat is rotated 45 degrees, the whole threat image is covered and nothing is cut out. Loop through the background images and find the coordinates of the centre of the largest contour found in the background image using get_xy() function. Next, we fix the threat image according to the x, y position in background image. Finally we lace the threat in the background image using the place_threat() function.

The saved images are stored in the output folder for future reference.

Documentation:

  1. read_images(path): This function reads the .jpg files from a specific location and returns a list of images as numpy array and the number of images read.
  2. form_square(image): This function takes in a image(threat, with the background set to black using the inRange() OpenCV function) and finds the left, right, top, and bottom of the threat object, therby removing the extra background. NOTE: The threat object is not guaranteed to be a square. So this function also checks the image for the height and width of the cropped threat image and pad black portion in top-buttom of left-right making it a square image.
  3. pad_image(image): This function calculates the diagonal length of the image and set the height and width of the image equal to diagonal length.
  4. get_xy(background): This function craeates a binary image of the baggage using inRange() function and then inverts it. Next it finds the contours in the binary image and then the contour with maximum area is selected and the center of the countour is found using moments().
  5. place_threat(background, threat, x=0, y=0): This function places the threat image in the background image in (x, y) location on the background. Defaults to x=0 and y=0.
Owner
Arya Shah
Computer Science Junior with Honors in Business Systems | Software Development Engineering | Machine Learning |
Arya Shah
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023