Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Overview

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity

Pytorch implementation for "Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity" (CVPR 2022, link TBD) by Weiyao Wang, Matt Feiszli, Heng Wang, Jitendra Malik, and Du Tran. We propose a framework for open-world instance segmentation, Generic Grouping Network (GGN), which exploits pseudo Ground Truth training strategy. On the same backbone, GGN produces impressive AR gains compared to closed-world training on cross-category generalization (+11% VOC to Non-VOC) and cross-dataset generalization (+5.2% COCO to UVO).

What is it? Open-world instance segmentation requires a model to group pixels into object instances without a pre-defined taxonomy, that is, both "seen" categories (those present during training) and "unseen" categories (not seen during training). There is generally a large performance gap between the seen and unseen domains. For example, a baseline Mask R-CNN miss 15 annotated masks in the example below. Without additional training data or annotations, Mask R-CNN trained with GGN framework produces 9 more segments correctly, being much closer to ground truth annotations.

How we do it? Our approach first learns a pairwise affinity predictor that captures correctly if two pixels belong to same instance or not. We demonstrate such pairwise affinity representation generalizes well to unseen domains. We then use a grouping module (e.g. MCG) to extract and rank segments from predicted PA. We can run this on any image dataset without using annotations; we extract highest ranked segments as "pseudo ground truth" candidate masks. This is a large and category-agnostic set; we add it to our (much smaller) datasets of curated annotations to train a detector.


About the code. This repo is built based on mmdetection with the addition of OLN backbone (concurrent work). The repo is tested under Python 3.7, PyTorch 1.7.0, Cuda 11.0, and mmcv==1.2.5. We thank authors of OLN for releasing their work to facilitate research.

Model zoo

Below we release PA predictor models, pseudo-GT generated by PA predictors and GGN trained with both annotated-GT and pseudo-GT. We also release some of the processed annotations from LVIS to conduct cross-category generalization experiments.

Training Eval url Baseline AR GGN AR Top-K Pseudo
Person, COCO Non-Person, COCO PA/Pseudo/GGN 4.9 20.9 3
VOC, COCO Non-VOC, COCO PA/Pseudo/Pseudo-OLN/ GGN/GGN-OLN 19.9 28.7 (33.7 with OLN) 3
COCO, LVIS Non-COCO, LVIS PA/Pseudo/GGN 16.5 20.4 1
Non-COCO, LVIS COCO PA/Pseudo/GGN 21.7 23.6 1
COCO UVO PA/Pseudo/GGN 40.1 43.4 3
COCO, random init ImageNet PA/Pseudo/GGN 10

We remark using large-scale pre-training in the last row as initialization and finetune GGN on COCO with pseudo-GT on COCO gives further improvement (45.3 on UVO), with model.

Installation

This repo is built based on mmdetection.

You can use following commands to create conda env with related dependencies.

conda create -n ggn python=3.7 -y
conda activate ggn
conda install pytorch=1.7.0 torchvision cudatoolkit=11.0 -c pytorch -y
pip install mmcv-full
pip install -r requirements.txt
pip install -v -e .

Please also refer to get_started.md for more details of installation.

Next you will need to build the library for our grouping module:

cd pa_lib/cython_lib
python3 setup.py build_ext --inplace

Data Preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Our work also uses LVIS, UVO and ADE20K. To use ADE20K, please convert them into COCO-style annotations.

Training of pairwise affinity predictor

bash tools/dist_train.sh configs/pairwise_affinity/pa_train.py ${NUM_GPUS} --work-dir ${WORK_DIR}

Test PA

We provide a tool tools/test_pa.py to directly evaluate PA performance (e.g. on PA prediction and on grouped masks).

python tools/test_pa.py configs/pairwise_affinity/pa_train.py ${WORK_DIR}/latest.pth --eval pa --eval-proposals --test-partition nonvoc

Extracting pseudo-GT masks

We first begin by extracting masks. Example config pa_extract.py extracts pseudo-GT masks from PA trained on VOC subsets of COCO. use-gt-masks flag asks the pipeline to compute maximum IoU an extracted masks has with the GT. It is recommended to split the dataset into multiple shards to run extractions. On original image resolution and Nvidia V100 machine, it takes about 4.8s per image to run the full pipeline (compute PA, run grouping, ranking then compute IoU with annotated GT) without globalization and trained ranker or 10s with globalization and trained ranker.

python tools/extract_pa_masks.py configs/pairwise_affinity/pa_extract.py ${PA_MODEL_PATH} --out ${OUT_DIR}/masks.json --use-gt-masks 1

The extracted masks will be stored in JSON with the following format

[
  [segm1, segm2,..., segm20] ## Result of an image
  ...
]

We refer to tools/merge_annotations.py for reference on formatting the extracted masks as a new COCO-style annotation file. We remark that tools/interpolate_extracted_masks.py may be necessary if not running extraction on original image resolution.

Training of GGN

Please specify additional_ann_file with the extracted pseudo-GT in previous step in class_agn_mask_rcnn_pa.py.

bash tools/dist_train.sh configs/mask_rcnn/class_agn_mask_rcnn_pa.py ${NUM_GPUS}

class_agn_mask_rcnn_gn_online.py is used to train ImageNet extracted masks since there are too many annotations and we cannot store everything in a single json file without OOM. We will need to break it into per-image annotations in the format of "{image_id}.json".

Testing

python tools/test.py configs/mask_rcnn/class_agn_mask_rcnn.py ${WORK_DIR}/latest.pth --eval segm

To cite this work

@article{wang2022ggn,
  title={Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity},
  author={Wang, Weiyao and Feiszli, Matt and Wang, Heng and Malik, Jitendra and Tran, Du},
  journal={CVPR},
  year={2022}
}

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
Meta Research
Meta Research
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023