Compare GAN code.

Overview

Compare GAN

This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks:

  • losses (such non-saturating GAN, least-squares GAN, and WGAN),
  • penalties (such as the gradient penalty),
  • normalization techniques (such as spectral normalization, batch normalization, and layer normalization),
  • neural architectures (BigGAN, ResNet, DCGAN), and
  • evaluation metrics (FID score, Inception Score, precision-recall, and KID score).

The code is configurable via Gin and runs on GPU/TPU/CPUs. Several research papers make use of this repository, including:

  1. Are GANs Created Equal? A Large-Scale Study [Code]
    Mario Lucic*, Karol Kurach*, Marcin Michalski, Sylvain Gelly, Olivier Bousquet [NeurIPS 2018]

  2. The GAN Landscape: Losses, Architectures, Regularization, and Normalization [Code] [Colab]
    Karol Kurach*, Mario Lucic*, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly [ICML 2019]

  3. Assessing Generative Models via Precision and Recall [Code]
    Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly [NeurIPS 2018]

  4. GILBO: One Metric to Measure Them All [Code]
    Alexander A. Alemi, Ian Fischer [NeurIPS 2018]

  5. A Case for Object Compositionality in Deep Generative Models of Images [Code]
    Sjoerd van Steenkiste, Karol Kurach, Sylvain Gelly [2018]

  6. On Self Modulation for Generative Adversarial Networks [Code]
    Ting Chen, Mario Lucic, Neil Houlsby, Sylvain Gelly [ICLR 2019]

  7. Self-Supervised GANs via Auxiliary Rotation Loss [Code] [Colab]
    Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, Neil Houlsby [CVPR 2019]

  8. High-Fidelity Image Generation With Fewer Labels [Code] [Blog Post] [Colab]
    Mario Lucic*, Michael Tschannen*, Marvin Ritter*, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly [ICML 2019]

Installation

You can easily install the library and all necessary dependencies by running: pip install -e . from the compare_gan/ folder.

Running experiments

Simply run the main.py passing a --model_dir (this is where checkpoints are stored) and a --gin_config (defines which model is trained on which data set and other training options). We provide several example configurations in the example_configs/ folder:

  • dcgan_celeba64: DCGAN architecture with non-saturating loss on CelebA 64x64px
  • resnet_cifar10: ResNet architecture with non-saturating loss and spectral normalization on CIFAR-10
  • resnet_lsun-bedroom128: ResNet architecture with WGAN loss and gradient penalty on LSUN-bedrooms 128x128px
  • sndcgan_celebahq128: SN-DCGAN architecture with non-saturating loss and spectral normalization on CelebA-HQ 128x128px
  • biggan_imagenet128: BigGAN architecture with hinge loss and spectral normalization on ImageNet 128x128px

Training and evaluation

To see all available options please run python main.py --help. Main options:

  • To train the model use --schedule=train (default). Training is resumed from the last saved checkpoint.
  • To evaluate all checkpoints use --schedule=continuous_eval --eval_every_steps=0. To evaluate only checkpoints where the step size is divisible by 5000, use --schedule=continuous_eval --eval_every_steps=5000. By default, 3 averaging runs are used to estimate the Inception Score and the FID score. Keep in mind that when running locally on a single GPU it may not be possible to run training and evaluation simultaneously due to memory constraints.
  • To train and evaluate the model use --schedule=eval_after_train --eval_every_steps=0.

Training on Cloud TPUs

We recommend using the ctpu tool to create a Cloud TPU and corresponding Compute Engine VM. We use v3-128 Cloud TPU v3 Pod for training models on ImageNet in 128x128 resolutions. You can use smaller slices if you reduce the batch size (options.batch_size in the Gin config) or model parameters. Keep in mind that the model quality might change. Before training make sure that the environment variable TPU_NAME is set. Running evaluation on TPUs is currently not supported. Use a VM with a single GPU instead.

Datasets

Compare GAN uses TensorFlow Datasets and it will automatically download and prepare the data. For ImageNet you will need to download the archive yourself. For CelebAHq you need to download and prepare the images on your own. If you are using TPUs make sure to point the training script to your Google Storage Bucket (--tfds_data_dir).

Owner
Google
Google ❤️ Open Source
Google
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023