This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Overview

Self-Supervised Learning with Vision Transformers

By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu

This repo is the official implementation of "Self-Supervised Learning with Swin Transformers".

A important feature of this codebase is to include Swin Transformer as one of the backbones, such that we can evaluate the transferring performance of the learnt representations on down-stream tasks of object detection and semantic segmentation. This evaluation is usually not included in previous works due to the use of ViT/DeiT, which has not been well tamed for down-stream tasks.

It currently includes code and models for the following tasks:

Self-Supervised Learning and Linear Evaluation: Included in this repo. See get_started.md for a quick start.

Transferring Performance on Object Detection/Instance Segmentation: See Swin Transformer for Object Detection.

Transferring Performance on Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Highlights

  • Include down-stream evaluation: the first work to evaluate the transferring performance on down-stream tasks for SSL using Transformers
  • Small tricks: significantly less tricks than previous works, such as MoCo v3 and DINO
  • High accuracy on ImageNet-1K linear evaluation: 72.8 vs 72.5 (MoCo v3) vs 72.5 (DINO) using DeiT-S/16 and 300 epoch pre-training

Updates

05/13/2021

  1. Self-Supervised models with DeiT-Small on ImageNet-1K (MoBY-DeiT-Small-300Ep-Pretrained, MoBY-DeiT-Small-300Ep-Linear) are provided.
  2. The supporting code and config for self-supervised learning with DeiT-Small are provided.

05/11/2021

Initial Commits:

  1. Self-Supervised Pre-training models on ImageNet-1K (MoBY-Swin-T-300Ep-Pretrained, MoBY-Swin-T-300Ep-Linear) are provided.
  2. The supported code and models for self-supervised pre-training and ImageNet-1K linear evaluation, COCO object detection and ADE20K semantic segmentation are provided.

Introduction

MoBY: a self-supervised learning approach by combining MoCo v2 and BYOL

MoBY (the name MoBY stands for MoCo v2 with BYOL) is initially described in arxiv, which is a combination of two popular self-supervised learning approaches: MoCo v2 and BYOL. It inherits the momentum design, the key queue, and the contrastive loss used in MoCo v2, and inherits the asymmetric encoders, asymmetric data augmentations and the momentum scheduler in BYOL.

MoBY achieves reasonably high accuracy on ImageNet-1K linear evaluation: 72.8% and 75.3% top-1 accuracy using DeiT and Swin-T, respectively, by 300-epoch training. The performance is on par with recent works of MoCo v3 and DINO which adopt DeiT as the backbone, but with much lighter tricks.

teaser_moby

Swin Transformer as a backbone

Swin Transformer (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It achieves strong performance on COCO object detection (58.7 box AP and 51.1 mask AP on test-dev) and ADE20K semantic segmentation (53.5 mIoU on val), surpassing previous models by a large margin.

We involve Swin Transformer as one of backbones to evaluate the transferring performance on down-stream tasks such as object detection. This differentiate this codebase with other approaches studying SSL on Transformer architectures.

ImageNet-1K linear evaluation

Method Architecture Epochs Params FLOPs img/s Top-1 Accuracy Pre-trained Checkpoint Linear Checkpoint
Supervised Swin-T 300 28M 4.5G 755.2 81.2 Here
MoBY Swin-T 100 28M 4.5G 755.2 70.9 TBA
MoBY1 Swin-T 100 28M 4.5G 755.2 72.0 TBA
MoBY DeiT-S 300 22M 4.6G 940.4 72.8 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
MoBY Swin-T 300 28M 4.5G 755.2 75.3 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
  • 1 denotes the result of MoBY which has adopted a trick from MoCo v3 that replace theLayerNorm layers before the MLP blocks by BatchNorm.

  • Access code for baidu is moby.

Transferring to Downstream Tasks

COCO Object Detection (2017 val)

Backbone Method Model Schd. box mAP mask mAP Params FLOPs
Swin-T Mask R-CNN Sup. 1x 43.7 39.8 48M 267G
Swin-T Mask R-CNN MoBY 1x 43.6 39.6 48M 267G
Swin-T Mask R-CNN Sup. 3x 46.0 41.6 48M 267G
Swin-T Mask R-CNN MoBY 3x 46.0 41.7 48M 267G
Swin-T Cascade Mask R-CNN Sup. 1x 48.1 41.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 1x 48.1 41.5 86M 745G
Swin-T Cascade Mask R-CNN Sup. 3x 50.4 43.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 3x 50.2 43.5 86M 745G

ADE20K Semantic Segmentation (val)

Backbone Method Model Crop Size Schd. mIoU mIoU (ms+flip) Params FLOPs
Swin-T UPerNet Sup. 512x512 160K 44.51 45.81 60M 945G
Swin-T UPerNet MoBY 512x512 160K 44.06 45.58 60M 945G

Citing MoBY and Swin

MoBY

@article{xie2021moby,
  title={Self-Supervised Learning with Swin Transformers}, 
  author={Zhenda Xie and Yutong Lin and Zhuliang Yao and Zheng Zhang and Qi Dai and Yue Cao and Han Hu},
  journal={arXiv preprint arXiv:2105.04553},
  year={2021}
}

Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Getting Started

Owner
Swin Transformer
This organization maintains repositories built on Swin Transformers. The pretrained models locate at https://github.com/microsoft/Swin-Transformer
Swin Transformer
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022