Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Related tags

Deep LearningSync2Gen
Overview

Sync2Gen

Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

results

0. Environment

Environment: python 3.6 and cuda 10.0 on Ubuntu 18.04

  • Pytorch 1.4.0
  • tensorflow 1.14.0 (for tensorboard)

1. Dataset

├──dataset_3dfront/
    ├──data
        ├── bedroom
            ├── 0_abs.npy
            ├── 0_rel.pkl
            ├── ...
        ├── living
            ├── 0_abs.npy
            ├── 0_rel.pkl
            ├── ...
        ├── train_bedroom.txt
        ├── train_living.txt
        ├── val_bedroom.txt
        └── val_living.txt

See 3D-FRONT Dataset for dataset generation.

2. VAE

2.1 Generate scenes from random noises

Download the pretrained model from https://drive.google.com/file/d/1VKNlEdUj1RBUOjBaBxE5xQvfsZodVjam/view?usp=sharing

Sync2Gen
└── log
    └── 3dfront
        ├── bedroom
        │   └── vaef_lr0001_w00001_B64
        │       ├── checkpoint_eval799.tar
        │       └── pairs
        └── living
            └── vaef_lr0001_w00001_B64
                ├── checkpoint_eval799.tar
                └── pairs
type='bedroom'; # or living
CUDA_VISIBLE_DEVICES=0 python ./test_sparse.py  --type $type  --log_dir ./log/3dfront/$type/vaef_lr0001_w00001_B64 --model_dict=model_scene_forward --max_parts=80 --num_class=20 --num_each_class=4 --batch_size=32 --variational --latent_dim 20 --abs_dim 16  --weight_kld 0.0001  --learning_rate 0.001 --use_dumped_pairs --dump_results --gen_from_noise --num_gen_from_noise 100

The predictions are dumped in ./dump/$type/vaef_lr0001_w00001_B64

2.2 Training

To train the network:

type='bedroom'; # or living
CUDA_VISIBLE_DEVICES=0 python ./train_sparse.py --data_path ./dataset_3dfront/data  --type $type  --log_dir ./log/3dfront/$type/vaef_lr0001_w00001_B64  --model_dict=model_scene_forward --max_parts=80 --num_class=20 --num_each_class=4 --batch_size=64 --variational --latent_dim 20 --abs_dim 16  --weight_kld 0.0001  --learning_rate 0.001

3. Bayesian optimization

cd optimization

3.1 Prior generation

See Prior generation.

3.2 Optimization

type=bedroom # or living;
bash opt.sh $type vaef_lr0001_w00001_B64  EXP_NAME

We use Pytorch-LBFGS for optimization.

3.3 Visualization

There is a simple visualization tool:

type=bedroom # or living
bash vis.sh $type vaef_lr0001_w00001_B64 EXP_NAME

The visualization is in ./vis. {i:04d}_2(3)d_pred.png is the initial prediction from VAE. {i:04d}_2(3)d_sync.png is the optimized layout after synchronization.

Acknowledgements

The repo is built based on:

We thank the authors for their great job.

Contact

If you have any questions, you can contact Haitao Yang (yanghtr [AT] outlook [DOT] com).

Owner
Haitao Yang
Haitao Yang
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022