Baseline inference Algorithm for the STOIC2021 challenge.

Overview

STOIC2021 Baseline Algorithm

This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it implements a simple evaluation pipeline for an I3D model that was trained on the STOIC2021 training data. You can use this repo as a template for your submission to the Qualification phase of the STOIC2021 challenge.

If something does not work for you, please do not hesitate to contact us or add a post in the forum. If the problem is related to the code of this repository, please create a new issue on GitHub.

Table of Contents

Before implementing your own algorithm with this template, we recommend to first upload a grand-challenge.org Algorithm based on the unaltered template by following these steps:

Afterwards, you can easily implement your own algorithm, by altering this template and updating the Algorithm you created on grand-challenge.org.

Prerequisites

We recommend using this repository on Linux. If you are using Windows, we recommend installing Windows Subsystem for Linux (WSL). Please watch the official tutorial by Microsoft for installing WSL 2 with GPU support.

  • Have Docker installed.
  • Have an account on grand-challenge.org and make sure that you are a verified user there.

Building, testing, and exporting your container

Building

To test if your system is set up correctly, you can run ./build.sh (Linux) or ./build.bat (Windows), that simply implement this command:

docker build -t stoicalgorithm .

Please note that the next step (testing the container) also runs a build, so this step is not necessary if you are certain that everything is set up correctly.

Testing

To test if the docker container works as expected, test.sh/test.bat will build the container and run it on images provided in the ./test/ folder. It will then check the results (.json files produced by your algorithm) against the .json files in ./test/.

If the tests run successfully, you will see Tests successfully passed....

Note: If you do not have a GPU available on your system, remove the --gpus all flag in test.sh/test.bat to run the test. Note: When you implemented your own algorithm using this template, please update the the .json files in ./test/ according to the output of your algorithm before running test.sh/test.bat.

Exporting

Run export.sh/export.bat to save the docker image to ./STOICAlgorithm.tar.gz. This script runs build.sh/build.bat as well as the following command: docker save stoicalgorithm | gzip -c > STOICAlgorithm.tar.gz

Creating an Algorithm on grand-challenge.org

After building, testing, and exporting your container, you are ready to create an Algorithm on grand-challenge.org. Note that there is no need to alter the algorithm implemented in this baseline repository to start this step. Once you have created an Algorithm on grand-challenge.org, you can later upload new docker containers to that same Algorithm as many times as you wish.

You can create an Algorithm by following this link. Some important fields are:

  • Please choose a Title and Description for your algorithm;
  • Enter CT at Modalities and Lung (Thorax) at Structures;
  • Select a logo to represent your algorithm (preferably square image);
  • For the interfaces of the algorithm, please select CT Image as Inputs, and as Outputs select both Probability COVID-19 and Probability Severe COVID-19;
  • Choose Viewer CIRRUS Core (Public) as a Workstation;
  • At the bottom of the page, indicate that you would like your Docker image to use GPU and how much memory it needs. After filling in the form, click the "Save" button at the bottom of the page to create your Algorithm.

Uploading your container to your Algorithm

Uploading manually

You have now built, tested, and exported your container and created an Algorithm on grand-challenge.org. To upload your container to your Algorithm, go to "Containers" on the page for your Algorithm on grand-challenge.org. Click on "upload a Container" button, and upload your .tar.gz file. You can later update your container by uploading a new .tar.gz file.

Linking a GitHub repo

Instead of uploading the .tar.gz file directly, you can also link your GitHub repo. Once your repo is linked, grand-challenge.org will automatically build the docker image for you, and add the updated container to your Algorithm.

  • First, click "Link Github Repo". You will then see a dropdown box, where your Github repo is listed only if it has the Grand-Challenge app already installed. Usually this is not the case to begin with, so you should click on "link a new Github Repo". This will guide you through the installation of the Grand-challenge app in your repository.
  • After the installation of the app in your repository is complete you should be automatically returned to the Grand Challenge page, where you will find your repository now in the dropdown list (In the case you are not automatically returned to the same page you can find your algorithm and click "Link Github Repo" again). Select your repository from the dropdown list and click "Save".
  • Finally, you need to tag your repository, this will trigger Grand-Challenge to start building the docker container.

Make sure your container is Active

Please note that it can take a while until the container becomes active (The status will change from "Ready: False" to "Active") after uploading it, or after linking your Github repo. Check back later or refresh the URL after some time.

Submitting to the STOIC2021 Qualification phase

With your Algorithm online, you are ready to submit to the STOIC2021 Qualification Leaderboard. On https://stoic2021.grand-challenge.org/, navigate to the "Submit" tab. Navigate to the "Qualification" tab, and select your Algorithm from the drop down list. You can optionally leave a comment with your submission.

Note that, depending on the availability of compute nodes on grand-challenge.org, it may take some time before the evaluation of your Algorithm finishes and its results can be found on the Leaderboard.

Implementing your own algorithm

You can implement your own solution by editing the predict function in ./process.py. Any additional imported packages should be added to ./requirements.txt, and any additional files and folders you add should be explicitly copied in the ./Dockerfile. See ./requirements.txt and ./Dockerfile for examples. To update your algorithm, you can simply test and export your new Docker container, after which you can upload it to your Algorithm. Once your new container is Active, you can resubmit your Algorithm.

Please note that your container will not have access to the internet when executing on grand-challenge.org, so all model weights must be present in your container image. You can test this locally using the --network=none option of docker run.

Good luck with the STOIC2021 COVID-19 AI Challenge!

Tip: Running your algorithm on a test folder:

Once you validated that the algorithm works as expected in the Testing step, you might want to simply run the algorithm on the test folder and check the output .json files for yourself. If you are on a native Linux system you will need to create a results folder that the docker container can write to as follows (WSL users can skip this step).

mkdir ./results
chmod 777 ./results

To write the output of the algorithm to the results folder use the following command:

docker run --rm --memory=11g -v ./test:/input/ -v ./results:/output/ STOICAlgorithm
Owner
Luuk Boulogne
Luuk Boulogne
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022