Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

Related tags

Deep LearningDDMP-3D
Overview

DDMP-3D

Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021.

Instroduction

The objective of this paper is to learn context- and depthaware feature representation to solve the problem of monocular 3D object detection. We make following contributions: (i) rather than appealing to the complicated pseudo-LiDAR based approach, we propose a depth-conditioned dynamic message propagation (DDMP) network to effectively integrate the multi-scale depth information with the image context; (ii) this is achieved by first adaptively sampling context-aware nodes in the image context and then dynamically predicting hybrid depth-dependent filter weights and affinity matrices for propagating information; (iii) by augmenting a center-aware depth encoding (CDE) task, our method successfully alleviates the inaccurate depth prior; (iv) we thoroughly demonstrate the effectiveness of our proposed approach and show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.

arch

Requirements

Installation

Our code is based on DGMN, please refer to the installation for maskrcnn-benchmark compilation.

  • My settings

    conda activate maskrcnn_benchmark 
      (maskrcnn_benchmark)  conda list
      python				3.8.5
      pytorch				1.4.0          
      cudatoolkit				10.0.130  
      torchfile				0.1.0
      torchvision				0.5.0
      apex					0.1 

Data preparation

Download and unzip the full KITTI detection dataset to the folder /path/to/kitti/. Then place a softlink (or the actual data) in data/kitti/. There are two widely used training/validation set splits for the KITTI dataset. Here we only show the setting of split1, you can set split2 accordingly.

cd D4LCN
ln -s /path/to/kitti data/kitti
ln -s /path/to/kitti/testing data/kitti_split1/testing

Our method uses DORN (or other monocular depth models) to extract depth maps for all images. You can download and unzip the depth maps extracted by DORN here and put them (or softlink) to the folder data/kitti/depth_2/. (You can also change the path in the scripts setup_depth.py). Additionally, we also generate the xyz map (xy are the values along x and y axises on 2D plane, and z is the depth value) and save as pickle files and then operate like depth map.

Then use the following scripts to extract the data splits, which use softlinks to the above directory for efficient storage.

python data/kitti_split1/setup_split.py
python data/kitti_split1/setup_depth.py

Next, build the KITTI devkit eval for split1.

sh data/kitti_split1/devkit/cpp/build.sh

Lastly, build the nms modules

cd lib/nms
make

Training

You can change the batch_size according to the number of GPUs, default: 8 GPUs with batch_size = 5 on Tesla v100(32G).

If you want to utilize the resnet backbone pre-trained on the COCO dataset, it can be downloaded from git or Google Drive, default: ImageNet pretrained pytorch model, we downloaded the model and saved at 'data/'. You can also set use_corner and corner_in_3d to False for quick training.

See the configurations in scripts/config/config.py and scripts/train.py for details.

sh train.sh

Testing

Generate the results using:

python scripts/test.py

we afford the generated results for evaluation due to the tedious process of data preparation process. Unzip the output.zip and then execute the above evaluation commonds. We show the results in paper, and supplementary. Additionally, we also trained a model replacing the depth map (only contains value of z) with coordinate xyz (xy are the values along x and y axises on 2D plane), which achieves the best performance. You can download the best model on Google Drive.

Models [email protected]. [email protected] [email protected]
model in paper 23.13 / 27.46 31.14 / 37.71 19.45 / 24.53
model in supp 23.17 / 27.85 32.40 / 42.05 19.35 / 24.91
model with coordinate(xyz), config 23.53 / 28.16 30.21 / 38.78 19.72 / 24.80

Acknowledgements

We thank D4LCN and DGMN for their great works and repos.

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{wang2021depth,
  title={Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection},
  author={Wang, Li and Du, Liang and Ye, Xiaoqing and Fu, Yanwei and Guo, Guodong and Xue, Xiangyang and Feng, Jianfeng and Zhang, Li},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={454--463},
  year={2021}
}

Contact

For questions regarding DDMP-3D, feel free to post here or directly contact the authors ([email protected]).

Owner
Li Wang
Ph.D
Li Wang
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. StanĀ® is

Stan 229 Dec 29, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022