N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

Related tags

Deep Learningn-hits
Overview

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

Recent progress in neural forecasting instigated significant improvements in the accuracy of large-scale forecasting systems. Yet, extremely long horizon forecasting remains a very difficult task. Two common challenges afflicting the long horizon forecasting are the volatility of the predictions and their computational complexity. In this paper we introduce N-HiTS, which addresses both challenges by incorporating novel hierarchical interpolation and multi-rate data sampling techniques. These techniques enable our method to assemble its predictions sequentially, selectively emphasizing components with different frequencies and scales while decomposing the input signal and synthesizing the forecast. We conduct an extensive empirical evaluation demonstrating the advantages of N-HiTS over the state-of-the-art long-horizon forecasting methods. On an array of multivariate forecasting tasks, our method provides an average accuracy improvement of 25% over the latest Transformer architectures while reducing the computational time by orders of magnitude.

N-HiTS architecture. The model is composed of several MLPs with ReLU nonlinearities. Blocks are connected via doubly residual stacking principle with the backcast y[t-L:t, l] and forecast y[t+1:t+H, l] outputs of the l-th block. Multi-rate input pooling, hierarchical interpolation and backcast residual connections together induce the specialization of the additive predictions in different signal bands, reducing memory footprint and compute time, improving architecture parsimony and accuracy.

Long Horizon Datasets Results

Run N-HiTS experiment from console

To replicate the results of the paper, in particular to produce the forecasts for N-HiTS, run the following:

  1. make init
  2. make get_dataset to download data.
make run_module module="python -m nhits_multivariate --hyperopt_max_evals 10 --experiment_id run_1"

If you want to use GPU simply add gpu=0 to the last line.

make run_module module="python -m nhits_multivariate --hyperopt_max_evals 10 --experiment_id run_1" gpu=0
  1. Evaluate results for a dataset using:
make run_module module="python -m evaluation --dataset ETTm2 --horizon -1 --model NHITS --experiment run_1"

Alternatively, run all evaluations at once:

for dataset in ETTm2 ECL Exchange traffic weather ili;
 do make run_module module="python -m evaluation --dataset $dataset --horizon -1 --model NHITS --experiment run_1";
done
Owner
Cristian Challu
Cristian Challu
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022