Code for "Learning to Segment Rigid Motions from Two Frames".

Overview

rigidmask

Code for "Learning to Segment Rigid Motions from Two Frames".

** This is a partial release with inference and evaluation code. The project is still being tested and documented. There might be implemention changes in the future release. Thanks for your interest.

Visuals on Sintel/KITTI/Coral (not temporally smoothed):

If you find this work useful, please consider citing:

@article{yang2021rigidmask,
  title={Learning to Segment Rigid Motions from Two Frames},
  author={Yang, Gengshan and Ramanan, Deva},
  journal={arXiv preprint arXiv:2101.03694},
  year={2021}
}

Data and precomputed results

Download

Additional inputs (coral reef images) and precomputed results are hosted on google drive. Run (assuming you have installed gdown)

gdown https://drive.google.com/uc?id=1Up2cPCjzd_HGafw1AB2ijGmiKqaX5KTi -O ./input.tar.gz
gdown https://drive.google.com/uc?id=12C7rl5xS66NpmvtTfikr_2HWL5SakLVY -O ./rigidmask-sf-precomputed.zip
tar -xzvf ./input.tar.gz 
unzip ./rigidmask-sf-precomputed.zip -d precomputed/

To compute the results in Tab.1, Tab.2 on KITTI,

modelname=rigidmask-sf
python eval/eval_seg.py  --path precomputed/$modelname/  --dataset 2015
python eval/eval_sf.py   --path precomputed/$modelname/  --dataset 2015

Install

The code is tested with python 3.8, pytorch 1.7.0, and CUDA 10.2. Install dependencies by

conda env create -f rigidmask.yml
conda activate rigidmask_v0
pip install kornia
python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.7/index.html

Compile DCNv2 and ngransac.

cd models/networks/DCNv2/; python setup.py install; cd -
cd models/ngransac/; python setup.py install; cd -

Pretrained models

Download pre-trained models to ./weights (assuming gdown is installed),

mkdir weights
mkdir weights/rigidmask-sf
mkdir weights/rigidmask-kitti
gdown https://drive.google.com/uc?id=1H2khr5nI4BrcrYMBZVxXjRBQYBcgSOkh -O ./weights/rigidmask-sf/weights.pth
gdown https://drive.google.com/uc?id=1sbu6zVeiiK1Ra1vp_ioyy1GCv_Om_WqY -O ./weights/rigidmask-kitti/weights.pth
modelname training set flow model flow err. (K:Fl-err/EPE) motion-in-depth err. (K:1e4) seg. acc. (K:obj/K:bg/S:bg)
rigidmask-sf (mono) SF C+SF+V 10.9%/3.128px 120.4 90.71%/97.05%/86.72%
rigidmask-kitti (stereo) SF+KITTI C+SF+V->KITTI 4.1%/1.155px 49.7 95.58%/98.91%/-

** C: FlythingChairs, SF(SceneFlow including FlyingThings, Monkaa, and Driving, K: KITTI scene flow training set, V: VIPER, S: Sintel.

Inference

Run and visualize rigid segmentation of coral reef video, (pass --refine to turn on rigid motion refinement). Results will be saved at ./weights/$modelname/seq/ and a output-seg.gif file will be generated in the current folder.

modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset seq-coral --datapath input/imgs/coral/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth --testres 1
python eval/generate_visual.py --datapath weights/$modelname/seq-coral/ --imgpath input/imgs/coral

Run and visualize two-view depth estimation on kitti video, a output-depth.gif will be saved to the current folder.

modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset seq-kitti --datapath input/imgs/kitti_2011_09_30_drive_0028_sync_11xx/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth --testres 1.2 --refine
python eval/generate_visual.py --datapath weights/$modelname/seq-kitti/ --imgpath input/imgs/kitti_2011_09_30_drive_0028_sync_11xx
python eval/render_scene.py --inpath weights/rigidmask-sf/seq-kitti/pc0-0000001110.ply

Run and evaluate kitti-sceneflow (monocular setup, Tab. 1 and Tab. 2),

modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset 2015 --datapath path-to-kitti-sceneflow-training   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --testres 1.2 --refine
python eval/eval_seg.py   --path weights/$modelname/  --dataset 2015
python eval/eval_sf.py   --path weights/$modelname/  --dataset 2015
modelname=rigidmask-sf
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset sintel_mrflow_val --datapath path-to-sintel-training   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --testres 1.5 --refine
python eval/eval_seg.py   --path weights/$modelname/  --dataset sintel
python eval/eval_sf.py   --path weights/$modelname/  --dataset sintel

Run and evaluate kitti-sceneflow (stereo setup, Tab. 6),

modelname=rigidmask-kitti
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset 2015 --datapath path-to-kitti-sceneflow-images   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --disp_path input/disp/kittisf-train-hsm-disp/ --fac 2 --maxdisp 512 --refine --sensor stereo
python eval/eval_seg.py   --path weights/$modelname/  --dataset 2015
python eval/eval_sf.py    --path weights/$modelname/  --dataset 2015

To generate results for kitti-sceneflow benchmark (stereo setup, Tab. 3),

modelname=rigidmask-kitti
mkdir ./benchmark_output
CUDA_VISIBLE_DEVICES=1 python submission.py --dataset 2015test --datapath path-to-kitti-sceneflow-images  --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/weights.pth  --disp_path input/disp/kittisf-test-ganet-disp/ --fac 2 --maxdisp 512 --refine --sensor stereo

Training (todo)

Acknowledge (incomplete)

Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022