SCNet: Learning Semantic Correspondence

Related tags

Deep LearningSCNet
Overview

SCNet Code

Region matching code is contributed by Kai Han ([email protected]).

Dense matching code is contributed by Rafael S. Rezende ([email protected]).

This code is written in MATLAB, and implements the SCNet[1]. For the dataset, see our project page: http://www.di.ens.fr/willow/research/scnet.

Install Dependencies

Codes

SCNet_Matconvnet

Additional Matconvnet modules implemented for SCNet. These code should be copied into matconvnet/matlab/ folder.

SCNet

This is the primary net work training and testing code.

  • SCNet_A_init.m, SCNet_AG_init.m, SCNet_AGplus_init.m: initialize the SCNet_A, SCNet_AG, SCNet_AG+.

  • SCNet_A.m, SCNet_AG.m, SCNet_AGplus.m: train SCNet_A, SCNet_AG, SCNet_AG+.

  • eva_PCR_mIoU_SCNet_A.m, eva_PCR_mIoU_SCNet_AG.m, eva_PCR_mIoU_SCNet_AGplus.m: evaluate the trained nets.

  • eva_PCR_mIoU_ImageNet_SCNet_A.m, eva_PCR_mIoU_ImageNet_SCNet_AG.m, eva_PCR_mIoU_ImageNet_SCNet_AGplus.m: evaluate SCNets with ImageNet pretrained parameters, i.e., SCNets without training.

SCNet_Baselines

Comparison code for our SCNet features and HOG features with NAM, PHM and LOM in Proposal Flow [2, 3].

  • NAM_HOG_eva.m, PHM_HOG_eva.m, LOM_HOG_eva.m: evaluate NAM, PHM, and LOM with HOG features.

  • NAM_SCNet_eva.m, PHM_SCNet_eva.m, LOM_SCNet_eva.m: evaluate NAM, PHM, and LOM with learned SCNet features.

  • HOG_SCNet_AG_eva.m: replace the learned SCNet feature by HOG feature in SCNet_AG model.

Data

We used PF-PASCAL, PF-WILLOW, PASCAL Parts and CUB data sets and follows Proposal Flow[2, 3] to generate our trainging data.

Triaining data preparation code is put in PF-PASCAL-code folder.

Notes

  • The code is provided for academic use only. Use of the code in any commercial or industrial related activities is prohibited.
  • If you use our code or dataset, please cite the paper.
@InProceedings{han2017scnet,
author = {Kai Han and Rafael S. Rezende and Bumsub Ham and Kwan-Yee K. Wong and Minsu Cho and Cordelia Schmid and Jean Ponce},
title = {SCNet: Learning Semantic Correspondence},
booktitle = {International Conference on Computer Vision (ICCV)},
year = {2017}
}

References

[1] Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K. Wong, Minsu Cho, Cordelia Schmid, Jean Ponce, "SCNet: Learning Semantic Correspondence", International Conference on Computer Vision (ICCV), 2017.

[2] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow: Semantic Correspondences from Object Proposals", IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 2017

[3] Bumsub Ham, Minsu Cho, Cordelia Schmid, Jean Ponce, "Proposal Flow", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

Owner
Kai Han
Visual Geometry Group (VGG)
Kai Han
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022