Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Overview

Neural Contours: Learning to Draw Lines from 3D Shapes

This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learning to Draw Lines from 3D Shapes" by Difan Liu, Mohamed Nabail, Aaron Hertzmann, Evangelos Kalogerakis.

[Arxiv]

Dependency

  • The project is developed on Ubuntu 16.04 with cuda9.0 + cudnn7.0. The code has been tested with PyTorch 1.1.0 (GPU version) and Python 3.6.8.
  • Python packages:
    • OpenCV (tested with 4.2.0)
    • PyYAML (tested with 5.3.1)
    • scikit-image (tested with 0.14.2)

Dataset and Weights

  • Pre-trained model is available here, please put it in data/model_weights:

    cd data/model_weights
    unzip weights.zip
    
  • download example testing data:

    cd data/example
    wget https://people.cs.umass.edu/~dliu/projects/NeuralContours/example.zip
    unzip example.zip
    
  • training data is available here.

Differentiable Geometry Branch

  • we use rtsc-1.6 to compute all the input geometric feature maps and lines. See here for details.
  • run geometry branch without NRM (Neural Ranking Module), this script takes thresholds of geometric lines as input:
    python -m scripts.geometry_branch_demo -sc 10.0 -r 10.0 -v 10.0 -ar 0.1 -model_name bumps_a -save_name data/output/bumps_a.png

Testing with NRM and ITB (Image Translation Branch)

  • Testing with NRM and ITB:
    python -m scripts.test -model_name bumps_a -save_name data/output/bumps_a_NCs.png
    Note that computation time depends on GPU performance, parameter setting and input 3D model. For reference, tested on GeForce GTX 1080 Ti, under default setting, Neural Contours of bumps_a takes about 12 minutes.

Cite:

@InProceedings{Liu_2020_CVPR,
author={Liu, Difan and Nabail, Mohamed and Hertzmann, Aaron and Kalogerakis, Evangelos},
title={Neural Contours: Learning to Draw Lines from 3D Shapes},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Contact

To ask questions, please email.

Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021