Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Overview

Graph-to-3D

This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arxiv
Helisa Dhamo*, Fabian Manhardt*, Nassir Navab, Federico Tombari
ICCV 2021

We address the novel problem of fully-learned 3D scene generation and manipulation from scene graphs, in which a user can specify in the nodes or edges of a semantic graph what they wish to see in the 3D scene.

If you find this code useful in your research, please cite

@inproceedings{graph2scene2021,
  title={Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs},
  author={Dhamo, Helisa and Manhardt, Fabian and Navab, Nassir and Tombari, Federico},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Setup

We have tested it on Ubuntu 16.04 with Python 3.7 and PyTorch 1.2.0

Code

# clone this repository and move there
git clone https://github.com/he-dhamo/graphto3d.git
cd graphto3d
# create a conda environment and install the requirments
conda create --name g2s_env python=3.7 --file requirements.txt 
conda activate g2s_env          # activate virtual environment
# install pytorch and cuda version as tested in our work
conda install pytorch==1.2.0 cudatoolkit=10.0 -c pytorch
# more pip installations
pip install tensorboardx graphviz plyfile open3d==0.9.0.0 open3d-python==0.7.0.0 
# Set python path to current project
export PYTHONPATH="$PWD"

To evaluate shape diversity, you will need to setup the Chamfer distance. Download the extension folder from the AtlasNetv2 repo and install it following their instructions:

cd ./extension
python setup.py install

To download our checkpoints for our trained models and the Atlasnet weights used to obtain shape features:

cd ./experiments
chmod +x ./download_checkpoints.sh && ./download_checkpoints.sh

Dataset

Download the 3RScan dataset from their official site. You will need to download the following files using their script:

python download.py -o /path/to/3RScan/ --type semseg.v2.json
python download.py -o /path/to/3RScan/ --type labels.instances.annotated.v2.ply

Additionally, download the metadata for 3RScan:

cd ./GT
chmod +x ./download_metadata_3rscan.sh && ./download_metadata_3rscan.sh

Download the 3DSSG data files to the ./GT folder:

chmod +x ./download_3dssg.sh && ./download_3dssg.sh

We use the scene splits with up to 9 objects per scene from the 3DSSG paper. The relationships here are preprocessed to avoid the two-sided annotation for spatial relationships, as these can lead to paradoxes in the manipulation task. Finally, you will need our directed aligned 3D bounding boxes introduced in our project page. The following scripts downloads these data.

chmod +x ./download_postproc_3dssg.sh && ./download_postproc_3dssg.sh

Run the transform_ply.py script from this repo to obtain 3RScan scans in the correct alignment:

cd ..
python scripts/transform_ply.py --data_path /path/to/3RScan

Training

To train our main model with shared shape and layout embedding run:

python scripts/train_vaegan.py --network_type shared --exp ./experiments/shared_model --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

To run the variant with separate (disentangled) layout and shape features:

python scripts/train_vaegan.py --network_type dis --exp ./experiments/separate_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual True

For the 3D-SLN baseline run:

python scripts/train_vaegan.py --network_type sln --exp ./experiments/sln_baseline --dataset_3RScan ../3RScan_v2/data/ --path2atlas ./experiments/atlasnet/model_70.pth --residual False --with_manipulator False --with_changes False --weight_D_box 0 --with_shape_disc False

One relevant parameter is --with_feats. If set to true, this tries to read shape features directly instead of reading point clouds and feading them in AtlasNet to obtain the feature. If features are not yet to be found, it generates them during the first epoch, and reads these stored features instead of points in the next epochs. This saves a lot of time at training.

Each training experiment generates an args.json configuration file that can be used to read the right parameters during evaluation.

Evaluation

To evaluate the models run

python scripts/evaluate_vaegan.py --dataset_3RScan ../3RScan_v2/data/ --exp ./experiments/final_checkpoints/shared --with_points False --with_feats True --epoch 100 --path2atlas ./experiments/atlasnet/model_70.pth --evaluate_diversity False

Set --evaluate_diversity to True if you want to compute diversity. This takes a while, so it's disabled by default. To run the 3D-SLN baseline, or the variant with separate layout and shape features, simply provide the right experiment folder in --exp.

Acknowledgements

This repository contains code parts that are based on 3D-SLN and AtlasNet. We thank the authors for making their code available.

Owner
Helisa Dhamo
Helisa Dhamo
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023