基于Paddle框架的arcface复现

Overview

arcface-Paddle

基于Paddle框架的arcface复现

ArcFace-Paddle

本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

参考项目:

InsightFace

Paddle版本:

paddlepaddle-gpu==2.0.2

数据集

MS1M-ArcFace 解压数据集,你应该得到以下目录结构

faces_more
|───property
└───cplfw.bin
└───agedb_30.bin
└───vgg2_fp.bin
└───lfw.bin
└───cfp_ff.bin
└───cfp_fp.bin
└───calfw.bin
└───train.rec
└───train.idx

其中train.rec包含训练的图像,train.idx包含训练的标签,其均为mxnet数据格式,其余.bin文件均为二进制bytes文件

训练

整个工程文件具有以下目录结构

|───faces_more
└───eval
└───mxnet_reader
└───mxnet_reader_win10
└───backbones
└───paddle_pretrainedmodel
└───utils
└───dataset.py
└───losses.py
└───partial_fc.py
└───config.py
└───train.py

注意:mxnet_reader用于Linux系统部署训练,mxnet_reader_win10用于win10系统部署训练,两者均为重构mxnet数据读取后的代码

配置说明

config.py里面包含训练的超参数,学习率衰减函数,训练文件路径以及验证文件列表

backbones里面包含提供的训练模型,iresnet18iresnet34iresnet50iresnet100iresnet200

partial_fc来源于论文《Partial FC: Training 10 Million Identities on a Single Machine》,其目的是加速训练超大规模数据集

paddle_pretrainedmodel包含网络的预训练文件,其均为由torch模型转换而来,里面包含测试代码model_test.py以及精度文件results.txt

启动训练

python train.py [--network XXX]

这将会在log文件夹下产生训练的日志文件,其包括损失值以及所需训练的的时间,工程中的training.log包含了部分训练过程中的打印信息

训练过程中的权重文件将保存在emore_arcface_r50文件夹下,保存路径源于你的config文件设置,你应具有以下类似目录

|───emore_arcface_r50
└───backbone.pdparams
└───rank:0_softmax_weight.pkl
└───rank:0_softmax_weight_mom.pkl

本次利用aistudio训练的iresnet50得到的backbone.pdparams精度如下,其中lfw=0.99750cplfw=0.92117calfw=0.96017,你可以通过修改/home/aistudio/paddle_pretrainedmodel/ model_test.py权重路径model_params=/home/aistudio/emore_arcface_r50/backbone.pdparams来测试自己的模型

由于aistudio对保存版本文件的限制,我将保存的文件已上传至我的服务器,你可以通过wget ftp://207.246.98.85/emore_arcface_r50.zip下载获取

启动测试

模型和数据集读取代码下载

提取码:dzc0

AIStudio链接

cd /home/aistudio/paddle_pretrainedmodel
python model_test.py [--network XXX]

注意到model_test.py测试的官方提供的预训练模型,测试自己的训练模型,你需要修改读取文件的路径以及网络结构

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022