DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

Overview

DirectVoxGO

DirectVoxGO (Direct Voxel Grid Optimization, see our paper) reconstructs a scene representation from a set of calibrated images capturing the scene.

  • NeRF-comparable quality for synthesizing novel views from our scene representation.
  • Super-fast convergence: Our 15 mins/scene vs. NeRF's 10~20+ hrs/scene.
  • No cross-scene pre-training required: We optimize each scene from scratch.
  • Better rendering speed: Our <1 secs vs. NeRF's 29 secs to synthesize a 800x800 images.

Below run-times (mm:ss) of our optimization progress are measured on a machine with a single RTX 2080 Ti GPU.

github_teaser.mp4

Update

  • 2021.11.23: Support CO3D dataset.
  • 2021.11.23: Initial release. Issue page is disabled for now. Feel free to contact [email protected] if you have any questions.

Installation

git clone [email protected]:sunset1995/DirectVoxGO.git
cd DirectVoxGO
pip install -r requirements.txt

Pytorch installation is machine dependent, please install the correct version for your machine. The tested version is pytorch 1.8.1 with python 3.7.4.

Dependencies (click to expand)
  • PyTorch, numpy: main computation.
  • scipy, lpips: SSIM and LPIPS evaluation.
  • tqdm: progress bar.
  • mmcv: config system.
  • opencv-python: image processing.
  • imageio, imageio-ffmpeg: images and videos I/O.

Download: datasets, trained models, and rendered test views

Directory structure for the datasets (click to expand; only list used files)
data
├── nerf_synthetic     # Link: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
│   └── [chair|drums|ficus|hotdog|lego|materials|mic|ship]
│       ├── [train|val|test]
│       │   └── r_*.png
│       └── transforms_[train|val|test].json
│
├── Synthetic_NSVF     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NSVF.zip
│   └── [Bike|Lifestyle|Palace|Robot|Spaceship|Steamtrain|Toad|Wineholder]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0_train|1_val|2_test]_*.png
│       └── pose
│           └── [0_train|1_val|2_test]_*.txt
│
├── BlendedMVS         # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/BlendedMVS.zip
│   └── [Character|Fountain|Jade|Statues]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── TanksAndTemple     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/TanksAndTemple.zip
│   └── [Barn|Caterpillar|Family|Ignatius|Truck]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── deepvoxels     # Link: https://drive.google.com/drive/folders/1ScsRlnzy9Bd_n-xw83SP-0t548v63mPH
│   └── [train|validation|test]
│       └── [armchair|cube|greek|vase]
│           ├── intrinsics.txt
│           ├── rgb/*.png
│           └── pose/*.txt
│
└── co3d               # Link: https://github.com/facebookresearch/co3d
    └── [donut|teddybear|umbrella|...]
        ├── frame_annotations.jgz
        ├── set_lists.json
        └── [129_14950_29917|189_20376_35616|...]
            ├── images
            │   └── frame*.jpg
            └── masks
                └── frame*.png

Synthetic-NeRF, Synthetic-NSVF, BlendedMVS, Tanks&Temples, DeepVoxels datasets

We use the datasets organized by NeRF, NSVF, and DeepVoxels. Download links:

Download all our trained models and rendered test views at this link to our logs.

CO3D dataset

We also support the recent Common Objects In 3D dataset. Our method only performs per-scene reconstruction and no cross-scene generalization.

GO

Train

To train lego scene and evaluate testset PSNR at the end of training, run:

$ python run.py --config configs/nerf/lego.py --render_test

Use --i_print and --i_weights to change the log interval.

Evaluation

To only evaluate the testset PSNR, SSIM, and LPIPS of the trained lego without re-training, run:

$ python run.py --config configs/nerf/lego.py --render_only --render_test \
                                              --eval_ssim --eval_lpips_vgg

Use --eval_lpips_alex to evaluate LPIPS with pre-trained Alex net instead of VGG net.

Reproduction

All config files to reproduce our results:

$ ls configs/*
configs/blendedmvs:
Character.py  Fountain.py  Jade.py  Statues.py

configs/nerf:
chair.py  drums.py  ficus.py  hotdog.py  lego.py  materials.py  mic.py  ship.py

configs/nsvf:
Bike.py  Lifestyle.py  Palace.py  Robot.py  Spaceship.py  Steamtrain.py  Toad.py  Wineholder.py

configs/tankstemple:
Barn.py  Caterpillar.py  Family.py  Ignatius.py  Truck.py

configs/deepvoxels:
armchair.py  cube.py  greek.py  vase.py

Your own config files

Check the comments in configs/default.py for the configuable settings. The default values reproduce our main setup reported in our paper. We use mmcv's config system. To create a new config, please inherit configs/default.py first and then update the fields you want. Below is an example from configs/blendedmvs/Character.py:

_base_ = '../default.py'

expname = 'dvgo_Character'
basedir = './logs/blended_mvs'

data = dict(
    datadir='./data/BlendedMVS/Character/',
    dataset_type='blendedmvs',
    inverse_y=True,
    white_bkgd=True,
)

Development and tuning guide

Extention to new dataset

Adjusting the data related config fields to fit your camera coordinate system is recommend before implementing a new one. We provide two visualization tools for debugging.

  1. Inspect the camera and the allocated BBox.
    • Export via --export_bbox_and_cams_only {filename}.npz:
      python run.py --config configs/nerf/mic.py --export_bbox_and_cams_only cam_mic.npz
    • Visualize the result:
      python tools/vis_train.py cam_mic.npz
  2. Inspect the learned geometry after coarse optimization.
    • Export via --export_coarse_only {filename}.npz (assumed coarse_last.tar available in the train log):
      python run.py --config configs/nerf/mic.py --export_coarse_only coarse_mic.npz
    • Visualize the result:
      python tools/vis_volume.py coarse_mic.npz 0.001 --cam cam_mic.npz
Inspecting the cameras & BBox Inspecting the learned coarse volume

Speed and quality tradeoff

We have reported some ablation experiments in our paper supplementary material. Setting N_iters, N_rand, num_voxels, rgbnet_depth, rgbnet_width to larger values or setting stepsize to smaller values typically leads to better quality but need more computation. Only stepsize is tunable in testing phase, while all the other fields should remain the same as training.

Acknowledgement

The code base is origined from an awesome nerf-pytorch implementation, but it becomes very different from the code base now.

Owner
sunset
A Ph.D. candidate working on computer vision tasks. Recently focusing on 3D modeling.
sunset
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
22 Oct 14, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023