Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

Related tags

Deep LearningIC-Conv
Overview

IC-Conv

This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search.

Getting Started

Download ImageNet pre-trained checkpoints.

Extract the file to get the following directory tree

|-- README.md
|-- ckpt
|   |-- detection
|   |-- human_pose
|   |-- segmentation
|-- config
|-- model
|-- pattern_zoo

Easy Use

The current implementation is coupled to specific downstream tasks. OpenMMLab users can quickly use IC-Conv in the following simple ways.

from models import IC_ResNet
import torch
net = IC_ResNet(depth=50,pattern_path='pattern_zoo/detection/ic_r50_k9.json')
net.eval()
inputs = torch.rand(1, 3, 32, 32)
outputs = net.forward(inputs)

For 2d Human Pose Estimation using MMPose

  1. Copying the config files to the config path of mmpose, such as
cp config/human_pose/ic_res50_k13_coco_640x640.py your_mmpose_path/mmpose/configs/bottom_up/resnet/coco/ic_res50_k13_coco_640x640.py
  1. Copying the inception conv files to the model path of mmpose,
cp model/ic_conv2d.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_conv2d.py
cp model/ic_resnet.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_resnet.py
  1. Running it directly like MMPose.

Model Zoo

We provided the pre-trained weights of IC-ResNet-50, IC-ResNet-101and IC-ResNeXt-101 (32x4d) on ImageNet and the weights trained on specific tasks.

For users with limited computing power, you can directly reuse our provided IC-Conv and ImageNet pre-training weights for detection, segmentation, and 2d human pose estimation tasks on other datasets.

Attentions: The links in the tables below are relative paths. Therefore, you should clone the repository and download checkpoints.

Object Detection

Detector Backbone Lr AP dilation_pattern checkpoint
Faster-RCNN-FPN IC-R50 1x 38.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-R101 1x 41.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-X101-32x4d 1x 42.1 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 42.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.0 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 45.7 pattern ckpt/imagenet_retrain_ckpt

Instance Segmentation

Detector Backbone Lr box AP mask AP dilation_pattern checkpoint
Mask-RCNN-FPN IC-R50 1x 40.0 35.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-R101 1x 42.6 37.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-X101-32x4d 1x 43.4 38.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 43.4 36.8 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.7 38.7 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 46.4 39.1 pattern ckpt/imagenet_retrain_ckpt

2d Human Pose Estimation

We adjust the learning rate of resnet backbone in MMPose and get better baseline results. Please see the specific config files in config/human_pose/.

Results on COCO val2017 without multi-scale test
Backbone Input Size AP dilation_pattern checkpoint
R50(mmpose) 640x640 47.9 ~ ~
R50 640x640 51.0 ~ ~
IC-R50 640x640 62.2 pattern ckpt/imagenet_retrain_ckpt
R101 640x640 55.5 ~ ~
IC-R101 640x640 63.3 pattern ckpt/imagenet_retrain_ckpt
Results on COCO val2017 with multi-scale test. 3 default scales ([2, 1, 0.5]) are used
Backbone Input Size AP
R50(mmpose) 640x640 52.5
R50 640x640 55.8
IC-R50 640x640 65.8
R101 640x640 60.2
IC-R101 640x640 68.5

Acknowledgement

The human pose estimation experiments are built upon MMPose.

Citation

If our paper helps your research, please cite it in your publications:

@article{liu2020inception,
 title={Inception Convolution with Efficient Dilation Search},
 author={Liu, Jie and Li, Chuming and Liang, Feng and Lin, Chen and Sun, Ming and Yan, Junjie and Ouyang, Wanli and Xu, Dong},
 journal={arXiv preprint arXiv:2012.13587},
 year={2020}
}
Owner
Jie Liu
Jie Liu
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022