mmdetection version of TinyBenchmark.

Overview

introduction

This project is an mmdetection version of TinyBenchmark.

TODO list:

  • add TinyPerson dataset and evaluation
  • add crop and merge for image during inference
  • implement RetinaNet and Faster-FPN baseline on TinyPerson
  • add SM/MSM experiment support
  • add visDronePerson dataset support and baseline performance
  • add point localization task for TinyPerson
  • add point localization task for visDronePerson
  • add point localization task for COCO

install and setup

download project

git clone https://github.com/ucas-vg/TOV_mmdetection --recursive

install mmdetection

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
conda install -c pytorch pytorch=1.5.0 cudatoolkit=10.2 torchvision -y  # (recommand)
# install latest pytorch prebuilt with the default prebuilt CUDA version (usually the latest)
# conda install -c pytorch pytorch torchvision -y

# install the latest mmcv
pip install mmcv-full --user
# install mmdetection
cd TOV_mmdetection
pip uninstall pycocotools
pip install -r requirements/build.txt
pip install -v -e . --user  # or "python setup.py develop"

For more detail, please refer mmdetection install to install mmdetecion.

Quickly Start

to train baseline of TinyPerson, download the mini_annotation of all annotation is enough, which can be downloaded as tiny_set/mini_annotations.tar.gz in Baidu Yun(password:pmcq) / Google Driver.

mkdir data
ln -s $Path of TinyPerson$ data/tiny_set
tar -zxvf data/tiny_set/mini_annotations.tar.gz && mv mini_annotations data/tiny_set/

# run experiment, for other config run, see exp/Baseline_TinyPerson.sh
export GPU=4 && LR=02 && CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=10000 tools/dist_train.sh configs2/TinyPerson/base/faster_rcnn_r50_fpn_1x_TinyPerson640.py $GPU \
  --work-dir ../TOV_mmdetection_cache/work_dir/TinyPerson/Base/faster_rcnn_r50_fpn_1x_TinyPerson640/old640x512_lr0${LR}_1x_${GPU}g/ \
  --cfg-options optimizer.lr=0.${LR}

performance

All train and test on 2080Ti,

  • CUDA10.1/10.2
  • python3.7, cudatookit=10.2, pytorch=1.5, torchvision=0.6

for Faster-FPN, we think the gain compare to TinyBenchmark may come from the cut and merge during inference running time and multi-gpu training.

performance 43.80(2) where 2 means the performance is mean result of running such setting for 2 time.

detector num_gpu $AP_{50}^{tiny}$ script
Faster-FPN 4 48.63(1) exp/Baseline_TinyPerson.sh:exp1.1
Adap RetainaNet 1 43.80(2) exp/Baseline_TinyPerson.sh:exp2.1
Adap RetainaNet 4 44.94(1) exp/Baseline_TinyPerson.sh:exp2.2(clip grad)
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022