Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Related tags

Deep LearningReNode
Overview

Topology-Imbalance Learning for Semi-Supervised Node Classification

Introduction

Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Supervised Node Classification"

Overview Figure This work investigates the topology-imbalance problem of node representation learning on graph-structured data. Unlike the "quantity-imbalance" problem, the topology imbalance is caused by the topological properties of the labeled nodes, i.e., the locations of the labeled nodes on the graph can influence how information is spread over the entire graph.

The conflict-detection based metric Totoro is proposed for measuring the degree of topology imbalance. Moreover, the ReNode method is proposed to relieve the topology imbalance issue for both transductive setting and inductive setting.

Transductive Setting

a) Introduction

The code for the transductive setting semi-supervised learning. Including the CORA/CiteSeer/PubMed/Photo/Computers experiment datasets as shown in paper. It is implemented mainly based on pytorch_geometric project: https://github.com/rusty1s/pytorch_geometric

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"
  • Set the operations in 'opt.py'; some important operations are listed:
    1. Experiment Dataset (the dataset will be downloaded automatically at the first running time): set data_name = ['cora','citeseer','pubmed','photo','computers']
    2. Backbone GNN':
      set model = ['sgc','ppnp','gcn','gat','sage','cheb']
    3. Training Loss:
      set loss-name = ['ce','focal','re-weight','cb-softmax']
    4. ReNode Method:
      set renode-reweight = 1/0 to open/close ReNode
      set rn-base-weight as the lowerbound of the ReNode Factor
      set rn-scale-weight as the scale range of the ReNode Factor
    5. Imbalance Issue:
      set size-imb-type = 'none' if study TINL-only
      set size-imb-type = 'step' if study TINL&QINL
  • Running command: 'python transductive_run.py'

Inductive Setting

a) Introduction

The code for the inductive setting semi-supervised learning. Including the Reddit and MAG-Scholar datasets. It is branched from the PPRGo project: https://github.com/TUM-DAML/pprgo_pytorch.

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"

  • Prepare the dataset file from the following public source:

    1. Reddit: https://github.com/TUM-DAML/pprgo_pytorch/blob/master/data/get_reddit.md
    2. MAG-Scholar: https://figshare.com/articles/dataset/mag_scholar/12696653/2
  • Set the operations in 'config.yaml'; some important operations are listed:

    1. ReNode Method:
      for baseline: set base_w = 1 and scale_w = 0
      for method: set base_w and scale_w
    2. Training Size:
      set ntrain_div_classes
    3. Imbalance Issue:
      set issue_type = 'tinl' if considering topology imbalance only
      set issue_type = 'qinl' if jointly considering topology- and quantity-imbalance
  • Running command: 'python inductive_run.py'

License

MIT License

Contact

Please feel free to email me (chendeli96 [AT] gmail.com) for any questions about this work.

Citation

@inproceedings{chen2021renode,
  author    = {Deli, Chen and Yankai, Lin and Guangxiang, Zhao and Xuancheng, Ren and Peng, Li and Jie, Zhou and Xu, Sun},
  title     = {{Topology-Imbalance Learning for Semi-Supervised Node Classification}},
  booktitle = {NeurIPS},
  year      = {2021}
}
Owner
Victor Chen
Victor Chen
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022