iNAS: Integral NAS for Device-Aware Salient Object Detection

Related tags

Deep LearningiNAS
Overview

iNAS: Integral NAS for Device-Aware Salient Object Detection

Introduction

Integral search design (jointly consider backbone/head structures, design/deploy devices).


Covers mainstream handcraft saliency head design.

SOTA performance with large latency reduction on diverse hardware platforms.


Updates

0.1.0 was released in 15/11/2021:

  • Support training and searching on Salient Object Detection (SOD).
  • Support four stages in one-shot architecture search.
  • Support stand-alone model inference with json configuration.
  • Provide off-the-shelf models and experiment logs.

Please refer to changelog.md for details and release history.

Dependencies and Installation

Dependencies

Install from a local clone

  1. Clone the repo

    git clone https://github.com/guyuchao/iNAS.git
  2. Install dependent packages

    conda create -n iNAS python=3.8
    conda install -c pytorch pytorch=1.7 torchvision cudatoolkit=10.2
    pip install -r requirements.txt
  3. Install iNAS
    Please run the following commands in the iNAS root path to install iNAS:

    python setup.py develop

Dataset Preparation

Folder Structure

iNAS
├── iNAS
├── experiment
├── scripts
├── options
├── datasets
│   ├── saliency
│   │   ├── DUTS-TR/            # Contains both images (.jpg) and labels (.png).
│   │   ├── DUTS-TR.lst         # Specify the image-label pair for training or testing.
│   │   ├── ECSSD/
│   │   ├── ECSSD.lst
│   │   ├── ...

Common Image SOD Datasets

We provide a list of common salient object detection datasets.

Name Datasets Short Description Download
SOD Training DUTS-TR 10553 images for SOD training Google Drive / Baidu Drive (psd: w69q)
SOD Testing ECSSD 1000 images for SOD testing
DUT-OMRON 5168 images for SOD testing
DUTS-TE 5019 images for SOD testing
HKU-IS 4447 images for SOD testing
PASCAL-S 850 images for SOD testing

How to Use

The iNAS integrates four main steps of one-shot neural architecture search:

  • Train supernet: Provide a fast performance evaluator for searching.
  • Search models: Find a pareto frontier based on performance evaluator and resource evaluator.
  • Convert weight/Retrain/Finetune: Promote searched model performance to its best. (We now support converting supernet weight to stand-alone models without retraining.)
  • Deploy: Test stand-alone models.

Please see Tutorial.md for the basic usage of those steps in iNAS.

Model Zoo

Pre-trained models and log examples are available in ModelZoo.md.

TODO List

  • Support multi-processing search (simply use data-parallel cannot increase search speed).
  • Complete documentations.
  • Add some applications.

Citation

If you find this project useful in your research, please consider cite:

@inproceedings{gu2021inas,
  title={iNAS: Integral NAS for Device-Aware Salient Object Detection},
  author={Gu, Yu-Chao and Gao, Shang-Hua and Cao, Xu-Sheng and Du, Peng and Lu, Shao-Ping and Cheng, Ming-Ming},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4934--4944},
  year={2021}
}

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (cc-by-nc-sa), where only non-commercial usage is allowed. For commercial usage, please contact us.

Acknowledgement

The project structure is borrowed from BasicSR, and parts of implementation and evaluation codes are borrowed from Once-For-All, BASNet and BiSeNet . Thanks for these excellent projects.

Contact

If you have any questions, please email [email protected].

Owner
顾宇超
Postgraduate at Nankai University.
顾宇超
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022