This repository contains a toolkit for collecting, labeling and tracking object keypoints

Overview

Object Keypoint Tracking

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

The project allows collecting images from multiple viewpoints using a robot with a wrist mounted camera. These image sequences can then be labeled using an easy to use user interface, StereoLabel.

StereoLabel keypoint labeling

Once the images are labeled, a model can be learned to detect keypoints in the images and compute 3D keypoints in the camera's coordinate frame.

Installation

External Dependencies:

  • HUD
  • ROS melodic/noetic

Install HUD. Then install dependencies with pip install -r requirements.txt and finally install the package using pip3 install -e ..

Usage

Here we describe the process we used to arrive at our labeled datasets and learned models.

Calibration and setup

First, calibrate your camera and obtain a hand-eye-calibration. Calibrating the camera can be done using Kalibr. Hand-eye-calibration can be done with the ethz-asl/hand_eye_calibration or easy_handeye packages.

The software currently assumes that the Kalibr pinhole-equi camera model was used when calibrating the camera.

Kalibr will spit out a yaml file like the one at config/calibration.yaml. This should be passed in as the --calibration argument for label.py and other scripts.

Once you have obtained the hand-eye calibration, configure your robot description so that the tf tree correctly is able to transform poses from the base frame to the camera optical frame.

Collecting data

The script scripts/collect_bags.py is a helper program to assist in collecting data. It will use rosbag to record the camera topics and and transform messages.

Run it with python3 scripts/collect_bags.py --out .

Press enter to start recording a new sequence. Recording will start after a 5 second grace period, after which the topics will be recorded for 30 seconds. During the 30 seconds, slowly guide the robot arm to different viewpoints observing your target objects.

Encoding data

Since rosbag is not a very convenient or efficient format for our purposes, we encode the data into a format that is easier to work with and uses up less disk space. This is done using the script scripts/encode_bag.py.

Run it with python3 scripts/encode_bags.py --bags --out --calibration .

Labeling data

Valve

First decide how many keypoints you will use for your object class and what their configuration is. Write a keypoint configuration file, like config/valve.json and config/cups.json. For example, in the case of our valve above, we define four different keypoints, which are of two types. The first type is the center keypoint type and the second is the spoke keypoint type. For our valve, there are three spokes, so we write our keypoint configuration as:

{ "keypoint_config": [1, 3] }

What this means, is that there will first be a keypoint of the first type and then three keypoints of the next type. Save this file for later.

StereoLabel can be launched with python3 scripts/label.py . To label keypoints, click on the keypoints in the same order in each image. Make sure to label the points consistent with the keypoint configuration that you defined, so that the keypoints end up on the right heatmaps downstream.

If you have multiple objects in the scene, it is important that you annotate one object at the time, sticking to the keypoint order, as the tool makes the assumption that one object's keypoints follow each other. The amount of keypoints you label should equal the amount of objects times the total number of keypoints per object.

Once you have labeled an equal number of points on the left and right image, points will be backprojected, so that you can make sure that everything is correctly configured and that you didn't accidentally label the points in the wrong order. The points are saved at the same time to a file keypoints.json in each scene's directory.

Here are some keyboard actions the tool supports:

  • Press a to change the left frame with a random frame from the current sequence.
  • Press b to change the right frame with a random frame from the current sequence.
  • Press to go to next sequence, after you labeled a sequence.

Switching frames is especially useful, if for example in one viewpoint a keypoint is occluded and it is hard to annotate accurately.

Once the points have been saved and backprojected, you can freely press a and b to swap out the frames to different ones in the sequence. It will project the 3D points back into 2D onto the new frames. You can check that the keypoints project nicely to each frame. If not, you likely misclicked, the viewpoints are too close to each other, there could be an issue with your intrinsics or hand-eye calibration or the camera poses are not accurate for some other reason.

Checking the data

Once all your sequences have been labeled, you can check that the labels are correct on all frames using python scripts/show_keypoints.py , which will play the images one by one and show the backprojected points.

Learning a model

First, download the weights for the CornerNet backbone model. This can be done from the CornerNet repository. We use the CornerNet-Squeeze model. Place the file at models/corner_net.pkl.

You can train a model with python scripts/train.py --train --val . Where --train points to the directory containing your training scenes. --val points to the directory containing your validation scenes.

Once done, you can package a model with python scripts/package_model.py --model lightning_logs/version_x/checkpoints/ .ckpt --out model.pt

You can then run and check the metrics on a test set using python scripts/eval_model.py --model model.pt --keypoints .

General tips

Here are some general tips that might be of use:

  • Collect data at something like 4-5 fps. Generally, frames that are super close to each other aren't that useful and you don't really need every single frame. I.e. configure your camera node to only publish image messages at that rate.
  • Increase the publishing rate of your robot_state_publisher node to something like 100 or 200.
  • Move your robot slowly when collecting the data such that the time synchronization between your camera and robot is not that big of a problem.
  • Keep the scenes reasonable.
  • Collect data in all the operating conditions in which you will want to be detecting keypoints at.
Owner
ETHZ ASL
ETHZ ASL
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022