paper list in the area of reinforcenment learning for recommendation systems

Overview

RL4Recsys

paper list in the area of reinforcenment learning for recommendation systems

https://github.com/cszhangzhen/DRL4Recsys

2020

SIGIR, Self-Supervised Reinforcement Learning for Recommender Systems, https://arxiv.org/abs/2006.05779

WSDM, Model-Based Reinforcement Learning for Whole-Chain Recommendations, https://arxiv.org/abs/1902.03987

WSDM, End-to-End Deep Reinforcement Learning based Recommendation with Supervised Embedding, https://dl.acm.org/doi/abs/10.1145/3336191.3371858

WSDM, Pseudo Dyna-Q: A Reinforcement Learning Framework for Interactive Recommendation, https://dl.acm.org/doi/abs/10.1145/3336191.3371801

AAAI, Simulating User Feedback for Reinforcement Learning Based Recommendations, https://arxiv.org/pdf/1906.11462.pdf

KBS, State representation modeling for deep reinforcement learning based recommendation, https://www.sciencedirect.com/science/article/abs/pii/S095070512030407X

MOReL : Model-Based Offline Reinforcement Learning, https://arxiv.org/abs/2005.05951

KDD, MBCAL: Sample Efficient and Variance Reduced Reinforcement Learning for Recommender Systems, https://arxiv.org/pdf/1911.02248.pdf

Generator and Critic: A Deep Reinforcement Learning Approach for Slate Re-ranking in E-commerce, https://arxiv.org/pdf/2005.12206.pdf

2019

NIPS, Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation, paper and code: http://papers.nips.cc/paper/9257-a-model-based-reinforcement-learning-with-adversarial-training-for-online-recommendation

NIPS, Benchmarking Batch Deep Reinforcement Learning Algorithms, https://arxiv.org/abs/1910.01708, code: https://github.com/sfujim/BCQ

ICML, Off-Policy Deep Reinforcement Learning without Exploration, https://arxiv.org/abs/1812.02900, code: https://github.com/sfujim/BCQ

ICML, Challenges of Real-World Reinforcement Learning, https://arxiv.org/abs/1904.12901

ICML, Horizon: Facebook's Open Source Applied Reinforcement Learning Platform, https://arxiv.org/pdf/1811.00260.pdf

ICML, Generative Adversarial User Model for Reinforcement Learning Based Recommendation System, paper and code, http://proceedings.mlr.press/v97/chen19f.html

KDD, Deep Reinforcement Learning for List-wise Recommendations,https://arxiv.org/pdf/1801.00209.pdf code: https://github.com/luozachary/drl-rec

WSDM, Top-K Off-Policy Correction for a REINFORCE Recommender System, https://arxiv.org/pdf/1812.02353.pdf

SigWeb, Deep reinforcement learning for search, recommendation, and online advertising: a survey, https://dl.acm.org/doi/abs/10.1145/3320496.3320500

UIST, Learning Cooperative Personalized Policies from Gaze Data, https://dl.acm.org/doi/abs/10.1145/3332165.3347933

Toward Simulating Environments in Reinforcement Learning Based Recommendations, https://arxiv.org/abs/1906.11462

RecSys, PyRecGym: a reinforcement learning gym for recommender systems, https://dl.acm.org/doi/abs/10.1145/3298689.3346981

Recsys, Revisiting offline evaluation for implicit-feedback recommender systems, https://dl.acm.org/doi/pdf/10.1145/3298689.3347069

IJCAI, Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology, https://arxiv.org/pdf/1905.12767.pdf

AAAI, Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning, https://arxiv.org/pdf/1805.10000.pdf

WWW, Towards Neural Mixture Recommender for Long Range Dependent User Sequences, https://dl.acm.org/doi/abs/10.1145/3308558.3313650

Deep Reinforcement Learning for Online Advertising in Recommender Systems, https://arxiv.org/abs/1909.03602

Towards Characterizing Divergence in Deep Q-Learning, https://arxiv.org/abs/1903.08894

Dynamic Search -- Optimizing the Game of Information Seeking, https://arxiv.org/abs/1909.12425

RecSim: A Configurable Simulation Platform for Recommender Systems, https://arxiv.org/abs/1909.04847

2018

KDD, Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application, https://arxiv.org/pdf/1803.00710.pdf

WWW, DRN: A Deep Reinforcement Learning Framework for News Recommendation, http://www.personal.psu.edu/~gjz5038/paper/www2018_reinforceRec/www2018_reinforceRec.pdf

General RL Materials

https://github.com/higgsfield/RL-Adventure-2, PyTorch tutorial of: actor critic / proximal policy optimization / acer / ddpg / twin dueling ddpg / soft actor critic / generative adversarial imitation learning / hindsight experience replay

Key Papers from OpenAI, https://spinningup.openai.com/en/latest/spinningup/keypapers.html

Strategic Exploration in Reinforcement Learning - New Algorithms and Learning Guarantees, https://www.ml.cmu.edu/research/phd-dissertation-pdfs/cmu-ml-19-116-dann.pdf

Other Paper

Learning to Recommend via Meta Parameter Partition, https://arxiv.org/pdf/1912.04108.pdf

Adversarial Machine Learning in Recommender Systems: State of the art and Challenges, https://arxiv.org/abs/2005.10322

WWW20, Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations, https://dl.acm.org/doi/abs/10.1145/3366424.3386195

ICLR2020, On the Variance of the Adaptive Learning Rate and Beyond, https://github.com/LiyuanLucasLiu/RAdam, code: https://github.com/LiyuanLucasLiu/RAdam

WSDM2020, Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback, https://dl.acm.org/doi/abs/10.1145/3336191.3371783

Recsys2019, Recommending what video to watch next: a multitask ranking system, https://dl.acm.org/doi/abs/10.1145/3298689.3346997

Recsys2019, Addressing delayed feedback for continuous training with neural networks in CTR prediction, https://dl.acm.org/doi/abs/10.1145/3298689.3347002

IJCAI2019, Sequential Recommender Systems: Challenges, Progress and Prospects, https://arxiv.org/abs/2001.04830

KDD2019, Fairness in Recommendation Ranking through Pairwise Comparisons, https://dl.acm.org/doi/abs/10.1145/3292500.3330745

BoTorch: Programmable Bayesian Optimization in PyTorch, https://arxiv.org/abs/1910.06403

Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022