AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

Related tags

Deep LearningAdaShare
Overview

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020)

Introduction

alt text

AdaShare is a novel and differentiable approach for efficient multi-task learning that learns the feature sharing pattern to achieve the best recognition accuracy, while restricting the memory footprint as much as possible. Our main idea is to learn the sharing pattern through a task-specific policy that selectively chooses which layers to execute for a given task in the multi-task network. In other words, we aim to obtain a single network for multi-task learning that supports separate execution paths for different tasks.

Here is the link for our arxiv version.

Welcome to cite our work if you find it is helpful to your research.

@article{sun2020adashare,
  title={Adashare: Learning what to share for efficient deep multi-task learning},
  author={Sun, Ximeng and Panda, Rameswar and Feris, Rogerio and Saenko, Kate},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Experiment Environment

Our implementation is in Pytorch. We train and test our model on 1 Tesla V100 GPU for NYU v2 2-task, CityScapes 2-task and use 2 Tesla V100 GPUs for NYU v2 3-task and Tiny-Taskonomy 5-task.

We use python3.6 and please refer to this link to create a python3.6 conda environment.

Install the listed packages in the virual environment:

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install -c menpo opencv
conda install pillow
conda install -c conda-forge tqdm
conda install -c anaconda pyyaml
conda install scikit-learn
conda install -c anaconda scipy
pip install tensorboardX

Datasets

Please download the formatted datasets for NYU v2 here

The formatted CityScapes can be found here.

Download Tiny-Taskonomy as instructed by its GitHub.

The formatted DomainNet can be found here.

Remember to change the dataroot to your local dataset path in all yaml files in the ./yamls/.

Training

Policy Learning Phase

Please execute train.py for policy learning, using the command

python train.py --config <yaml_file_name> --gpus <gpu ids>

For example, python train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0.

Sample yaml files are under yamls/adashare

Note: use domainnet branch for experiments on DomainNet, i.e. python train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Retrain Phase

After Policy Learning Phase, we sample 8 different architectures and execute re-train.py for retraining.

python re-train.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

where we use different --exp_ids to specify different random seeds and generate different architectures. The best performance of all 8 runs is reported in the paper.

For example, python re-train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

Note: use domainnet branch for experiments on DomainNet, i.e. python re-train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Test/Inference

After Retraining Phase, execute test.py for get the quantitative results on the test set.

python test.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

For example, python test.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

We provide our trained checkpoints as follows:

  1. Please download our model in NYU v2 2-Task Learning
  2. Please donwload our model in CityScapes 2-Task Learning
  3. Please download our model in NYU v2 3-Task Learning

To use these provided checkpoints, please download them to ../experiments/checkpoints/ and uncompress there. Use the following command to test

python test.py --config yamls/adashare/nyu_v2_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/cityscapes_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/nyu_v2_3task_test.yml --gpus 0 --exp_ids 0

Test with our pre-trained checkpoints

We also provide some sample images to easily test our model for nyu v2 3 tasks.

Please download our model in NYU v2 3-Task Learning

Execute test_sample.py to test on sample images in ./nyu_v2_samples, using the command

python test_sample.py --config  yamls/adashare/nyu_v2_3task_test.yml --gpus 0

It will print the average quantitative results of sample images.

Note

If any link is invalid or any question, please email [email protected]

Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022