Config files for my GitHub profile.

Overview

Canalyst Candas Data Science Library

Name

Canalyst Candas

Description

Built by a former PM / analyst to give anyone with a little bit of Python knowledge the ability to scale their investment process. Access, manipulate, and visualize Canalyst models, without opening Excel. Work with full fundamental models, create and calculate scenarios, and visualize actionable investment ideas.

Hosted collaborative Jupyterhub server available at Candas Cloud

  • Rather than simply deliver data, Candas serves the actual model in a Python class. Like a calculator, this allows for custom scenario evaluation for one or more companies at a time.
  • Use Candas to search for KPIs by partial or full description, filter by “key driver” – model driver, sector, category, or query against values for a screener-like functionality. Search either our full model dataset or our guidance dataset for companies which provide guidance.
  • Discover the KPIs with the greatest impact on stock price, and evaluate those KPIs based on changing P&L scenarios.
  • Visualize P&L statements in node trees with common size % and values attached. Use the built-in charting tools to efficiently make comparisons.

In short, a data science library using Canalyst's API, developed for securities analysis using Python.

  • Search KPI
  • Company data Dataframes (one company or many)
  • Charts
  • Model update (scenario analysis)
  • Visualize formula builds

Installation

Installation instructions can be found on our PyPI page

Usage

Search Guidance:

Candas is built to facilitate easy discovery of guidance in our Modelverse. You can search guidance for key items, either filtered by a ticker / ticker list or just across the entire Modelverse.

Guidance Example:

canalyst_search.search_guidance_time_series(ticker = "", #any ticker or list of tickers 
                sector="Consumer", #path in our nomenclature is a hierarchy of sectors
                file_name="", #file name is a proxy for company name
                time_series_name="", #our range name
                time_series_description="china", #human readable row header
                most_recent=True) #most recent item or all items 

Search KPI:

Candas is also built to facilitate easy discovery of KPI names in our Modelverse.

KPI Search Example:

canalyst_search.search_time_series(ticker = "",
                 sector="Thrifts",
                 category="",
                 unit_type="percentage",
                 mo_only=True,
                 period_duration_type='fiscal_quarter',
                 time_series_name='',
                 time_series_description='total revenue growth', #guessing on the time series name
                 query = 'value > 5')

ModelSet:

The core objects in Candas are Models. Models can be arranged in a set by instantiating a ModelFrame. Instantiate a config object to handle authentication.

model_set = cd.ModelSet(ticker_list=[ticker_list],config=config)

With modelset, the model_frame attribute returns Pandas dataframes. The parameters for model_frame():

  • time_series_name: Send in a partial string as time series name, model_frame will regex search for it
  • pivot: Pivot allows for excel-model style wide data (good for comp screens)
  • mrq: True / False filters to ONLY the most recent quarter
  • period_duration_type: is fiscal_quarter or fiscal_year or blank for both
  • is_historical: True will filter to only historical, False only forecasts, or blank for both
  • n_periods: defaults to 12 but most of our models go back to 2013
  • mrq_notation: applies to pivot, and will filter to historical data and apply MRQ-n notation on the columns (a way to handle off fiscal reporters in comp screens)

Example:

model_set.model_frame(time_series_name="MO_RIS_REV",
                  is_driver="",
                  pivot=False,
                  mrq=False,
                  period_duration_type='fiscal_quarter', #or fiscal_year
                  is_historical="",
                  n_periods=12,
                  mrq_notation=False)
`

Charting:

Candas has a Canalyst standard charting library which allows for easy visualizations.

Chart Example: Chart

df_plot = df[df['ticker'].isin(['AZUL US','MESA US'])][['ticker','period_name','value']].pivot_table(values="value", index=["period_name"],columns=["ticker"]).reset_index()
p = cd.Chart(df_plot['period_name'],df_plot[["AZUL US", "MESA US"]],["AZUL US", "MESA US"], [["Periods", "Actual"]], title="MO_MA_Fuel")
p.show()

Scenario Analysis:

Candas can arrange a forecast and send it to our scenario engine via the fit() function, and get changed outputs vs the default.

Example:

return_series = "MO_RIS_EPS_WAD_Adj"
list_output = []
for ts in time_series_names:
    df_params = model_set.forecast_frame(ts,
                             n_periods=-1,
                             function_name='multiply',
                             function_value=(1.1))
    dicts_output=model_set.fit(df_params,return_series)
    for key in dicts_output.keys():
        list_output.append(dicts_output[key].head(1))

ModelMap:

Candas can show a node tree at any level of the PNL

Example:

model_set.create_model_map(ticker=ticker,time_series_name="MO_RIS_REV",col_for_labels = "time_series_description").show() #launches in a separate browser window

ModelMap and Scenario Engine Together: ModelMap example: Node Chart for Fuel Margin Fuel Margin

KPI Importance / Scenario Engine:

Use the same node tree to extract key drivers, then use our scenario engine to rank order 1% changes in KPI driver vs subsequent revenue change

Example:

#use the same node tree to extract key drivers (red nodes in the map)
df = model_set.models[ticker].key_driver_map("MO_RIS_REV")
return_series = 'MO_RIS_REV'
driver_list_df = []
for i, row in df.iterrows():

    time_series_name = row['time_series_name']
    print(f"scenario: move {time_series_name} 1% and get resultant change in {return_series}")

    #create a param dataframe for each time series name in our list
    df_1_param = model_set.forecast_frame(time_series_name,
                         n_periods=-1,
                         function_name='multiply',
                         function_value=1.01)


    d_output=model_set.fit(df_1_param,return_series) #our fit function will return a link to scenario engine JSON for audit

    df_output = model_set.filter_summary(d_output,period_type='Q')

    df_merge = pd.merge(df_output,df_1_param,how='inner',left_on=['ticker','period_name'],right_on=['ticker','period_name'])

    driver_list_df.append(df_merge) #append to a list for concatenating at the end
df = pd.concat(driver_list_df).sort_values('diff',ascending=False)[['ticker','time_series_name_y','diff']]
df = df.rename(columns={'time_series_name_y':'time_series_name'})
df['diff'] = df['diff']-1
df = df.sort_values('diff')
df.plot(x='time_series_name',y='diff',kind='barh',title=ticker+" Key Drivers Revenue Sensitivity")

KPI Rank

Support

[email protected]

Contributing

Project is currently only open to contributors through discussion with the maintainer.

Authors and acknowledgment

[email protected]

License

APL 2.0

Project status

Ongoing

A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022