Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Overview

Deep learning algorithms for muon momentum estimation in the CMS Trigger System

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider (LHC). During a run, it generates about 40 TB data per second. Since It is not feasible to readout and store such a vast amount of data, so a trigger system selects and stores only interesting events or events likely to reveal new physics phenomena. The goal of this project is to benchmark the muon momentum estimation performance of Fully Connected Neural Networks (FCNN), Convolutional Neural Networks (CNN), and Graph Neural Networks (GNN), on the prompt and displaced muon samples detected by CSC stations at CMS to aid trigger system's transverse momentum (pT) muon estimation.

About

In the project FCNNs, CNNs, and GNNs are trained and evaluated on the prompt muon samples (two versions of same samples with different sampling approaches), and displaced muon samples generated by Monte Carlo simulation. The other details are -

  • Target Variables: Three types of predictions are benchmarked with each type of algorithm.
Target Loss
1/Transverse_momentum (1/pT) Mean Square Error (MSE)
Transverse Momentum (pT)
4 class classification
(0-10 GeV, 10-30 GeV, 30-100 GeV, >100 GeV)
Focal Loss
  • Validation Scheme: 10 fold out-of-fold predictions (i.e. dataset is splitted into 10 small batches, out of them 8 are used for training, 1 as validation dataset and 1 as holdout. This holdout is changed 10 times to give the final scores.)

  • Metrices Tracked:

    • MAE - Mean Absolute Error at a given transverse momentum (pT).
    • MAE/pT - Ratio of Mean Absolute Error to transverse momentum at a given transverse momentum.
    • Acurracy - At a given pT, muon samples can be divided into two classes, one muons with pT more than this given and another class of muons with pT less than this. So, Acurracy at a given pT is the accuracy for these two classes.
    • F1-score (of class pT>x GeV) - At a given pT, this is the f1-score of the class of muons with pT more than this given pT.
    • F1-score (of class pT - At a given pT, this is the f1-score of the class of muons with pT less than this given pT.
    • ROC-AUC Score of each class - only in case of four class classification
  • Preprocessing: Standard scaling of input coordinates

How to use

  1. Make sure that all the libraries mentioned in requirements.txt are installed
  2. Clone the repo
https://github.com/lastnameis-borah/CMS_moun_transverse_momentum_estimation.git
  1. Change current directory to the cloned directory and execute main.py with the required arguments
python main.py --path='/kaggle/input/cmsnewsamples/new-smaples.csv' \
                --dataset='prompt_new'\
                --predict='pT'\
                --model='FCNN'\
                --epochs=50 \
                --batch_size=512\
                --folds="0,1,2,3,4,5,6,7,8,9" \
                --results='/kaggle/working/results'

Note: Give absolute paths as argument

Arguments

  1. path - path of the csv having the coordinates of generated muon samples
  2. dataset - specify the samples that you are using (i.e. prompt_new, prompt_old, or displaced)
  3. predict - target variable (i.e. pT, 1/pT, or pT_classes)
  4. model - architecture to use (i.e. FCNN, CNN, or GNN)
  5. epochs - max number of epochs to train, if score converges than due to early-stopping training may stop earlier
  6. batchsize - number of samples in a batch
  7. folds - a string containing the info on which folds one wants the result
  8. results - path of the directory to save the results

Results

Regressing 1/pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Regressing pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Four class classification

  • Prompt Muons Samples-1
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.970 0.977 0.969
CNN 0.991 0.973 0.980 0.983
  • Prompt Muons Samples-2
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.975 0.981 0.958
CNN 0.991 0.976 0.983 0.983
  • Displaced Muons Samples
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.944 0.898 0.910 0.839
CNN 0.958 0.907 0.932 0.910
Owner
anuragB
Petroleum Engineering Undergrad. IITM Data Science Undergrad.
anuragB
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022