Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Overview

Deep learning algorithms for muon momentum estimation in the CMS Trigger System

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider (LHC). During a run, it generates about 40 TB data per second. Since It is not feasible to readout and store such a vast amount of data, so a trigger system selects and stores only interesting events or events likely to reveal new physics phenomena. The goal of this project is to benchmark the muon momentum estimation performance of Fully Connected Neural Networks (FCNN), Convolutional Neural Networks (CNN), and Graph Neural Networks (GNN), on the prompt and displaced muon samples detected by CSC stations at CMS to aid trigger system's transverse momentum (pT) muon estimation.

About

In the project FCNNs, CNNs, and GNNs are trained and evaluated on the prompt muon samples (two versions of same samples with different sampling approaches), and displaced muon samples generated by Monte Carlo simulation. The other details are -

  • Target Variables: Three types of predictions are benchmarked with each type of algorithm.
Target Loss
1/Transverse_momentum (1/pT) Mean Square Error (MSE)
Transverse Momentum (pT)
4 class classification
(0-10 GeV, 10-30 GeV, 30-100 GeV, >100 GeV)
Focal Loss
  • Validation Scheme: 10 fold out-of-fold predictions (i.e. dataset is splitted into 10 small batches, out of them 8 are used for training, 1 as validation dataset and 1 as holdout. This holdout is changed 10 times to give the final scores.)

  • Metrices Tracked:

    • MAE - Mean Absolute Error at a given transverse momentum (pT).
    • MAE/pT - Ratio of Mean Absolute Error to transverse momentum at a given transverse momentum.
    • Acurracy - At a given pT, muon samples can be divided into two classes, one muons with pT more than this given and another class of muons with pT less than this. So, Acurracy at a given pT is the accuracy for these two classes.
    • F1-score (of class pT>x GeV) - At a given pT, this is the f1-score of the class of muons with pT more than this given pT.
    • F1-score (of class pT - At a given pT, this is the f1-score of the class of muons with pT less than this given pT.
    • ROC-AUC Score of each class - only in case of four class classification
  • Preprocessing: Standard scaling of input coordinates

How to use

  1. Make sure that all the libraries mentioned in requirements.txt are installed
  2. Clone the repo
https://github.com/lastnameis-borah/CMS_moun_transverse_momentum_estimation.git
  1. Change current directory to the cloned directory and execute main.py with the required arguments
python main.py --path='/kaggle/input/cmsnewsamples/new-smaples.csv' \
                --dataset='prompt_new'\
                --predict='pT'\
                --model='FCNN'\
                --epochs=50 \
                --batch_size=512\
                --folds="0,1,2,3,4,5,6,7,8,9" \
                --results='/kaggle/working/results'

Note: Give absolute paths as argument

Arguments

  1. path - path of the csv having the coordinates of generated muon samples
  2. dataset - specify the samples that you are using (i.e. prompt_new, prompt_old, or displaced)
  3. predict - target variable (i.e. pT, 1/pT, or pT_classes)
  4. model - architecture to use (i.e. FCNN, CNN, or GNN)
  5. epochs - max number of epochs to train, if score converges than due to early-stopping training may stop earlier
  6. batchsize - number of samples in a batch
  7. folds - a string containing the info on which folds one wants the result
  8. results - path of the directory to save the results

Results

Regressing 1/pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Regressing pT

Metric Prompt Muons Samples-1 Prompt Muons Samples-2 Displaced Muons Samples
MAE/pT
MAE
Accuracy
F1-score (pT>x)
F1-score (pT

Four class classification

  • Prompt Muons Samples-1
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.970 0.977 0.969
CNN 0.991 0.973 0.980 0.983
  • Prompt Muons Samples-2
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.990 0.975 0.981 0.958
CNN 0.991 0.976 0.983 0.983
  • Displaced Muons Samples
Model 0-10 GeV 10-30 GeV 30-100 GeV >100GeV
FCNN 0.944 0.898 0.910 0.839
CNN 0.958 0.907 0.932 0.910
Owner
anuragB
Petroleum Engineering Undergrad. IITM Data Science Undergrad.
anuragB
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021