MIMO-UNet - Official Pytorch Implementation

Overview

MIMO-UNet - Official Pytorch Implementation

PWC PWC

This repository provides the official PyTorch implementation of the following paper:

Rethinking Coarse-to-Fine Approach in Single Image Deblurring

Sung-Jin Cho *, Seo-Won Ji *, Jun-Pyo Hong, Seung-Won Jung, Sung-Jea Ko

In ICCV 2021. (* indicates equal contribution)

Paper: https://arxiv.org/abs/2108.05054

Abstract: Coarse-to-fine strategies have been extensively used for the architecture design of single image deblurring networks. Conventional methods typically stack sub-networks with multi-scale input images and gradually improve sharpness of images from the bottom sub-network to the top sub-network, yielding inevitably high computational costs. Toward a fast and accurate deblurring network design, we revisit the coarse-to-fine strategy and present a multi-input multi-output U-net (MIMO-UNet). The MIMO-UNet has three distinct features. First, the single encoder of the MIMO-UNet takes multi-scale input images to ease the difficulty of training. Second, the single decoder of the MIMO-UNet outputs multiple deblurred images with different scales to mimic multi-cascaded U-nets using a single U-shaped network. Last, asymmetric feature fusion is introduced to merge multi-scale features in an efficient manner. Extensive experiments on the GoPro and RealBlur datasets demonstrate that the proposed network outperforms the state-of-the-art methods in terms of both accuracy and computational complexity.


Contents

The contents of this repository are as follows:

  1. Dependencies
  2. Dataset
  3. Train
  4. Test
  5. Performance
  6. Model

Dependencies

  • Python
  • Pytorch (1.4)
    • Different versions may cause some errors.
  • scikit-image
  • opencv-python
  • Tensorboard

Dataset

  • Download deblur dataset from the GoPro dataset .

  • Unzip files dataset folder.

  • Preprocess dataset by running the command below:

    python data/preprocessing.py

After preparing data set, the data folder should be like the format below:

GOPRO
├─ train
│ ├─ blur    % 2103 image pairs
│ │ ├─ xxxx.png
│ │ ├─ ......
│ │
│ ├─ sharp
│ │ ├─ xxxx.png
│ │ ├─ ......
│
├─ test    % 1111 image pairs
│ ├─ ...... (same as train)


Train

To train MIMO-UNet+ , run the command below:

python main.py --model_name "MIMO-UNetPlus" --mode "train" --data_dir "dataset/GOPRO"

or to train MIMO-UNet, run the command below:

python main.py --model_name "MIMO-UNet" --mode "train" --data_dir "dataset/GOPRO"

Model weights will be saved in results/model_name/weights folder.


Test

To test MIMO-UNet+ , run the command below:

python main.py --model_name "MIMO-UNetPlus" --mode "test" --data_dir "dataset/GOPRO" --test_model "MIMO-UNetPlus.pkl"

or to test MIMO-UNet, run the command below:

python main.py --model_name "MIMO-UNet" --mode "test" --data_dir "dataset/GOPRO" --test_model "MIMO-UNet.pkl"

Output images will be saved in results/model_name/result_image folder.


Performance

Method MIMO-UNet MIMO-UNet+ MIMO-UNet++
PSNR (dB) 31.73 32.45 32.68
SSIM 0.951 0.957 0.959
Runtime (s) 0.008 0.017 0.040

Model

We provide our pre-trained models. You can test our network following the instruction above.

Owner
Sungjin Cho
Ph.D Student at Korea University
Sungjin Cho
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023