git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Related tags

Deep Learningattattr
Overview

Self-Attention Attribution

This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Interactions Inside Transformer. It includes the code for generating the self-attention attribution score, pruning attention heads with our method, constructing the attribution tree and extracting the adversarial triggers. All of our experiments are conducted on bert-base-cased model, our methods can also be easily transfered to other Transformer-based models.

Requirements

  • Python version >= 3.5
  • Pytorch version == 1.1.0
  • networkx == 2.3

We recommend you to run the code using the docker under Linux:

docker run -it --rm --runtime=nvidia --ipc=host --privileged pytorch/pytorch:1.1.0-cuda10.0-cudnn7.5-devel bash

Then install the following packages with pip:

pip install --user networkx==2.3
pip install --user matplotlib==3.1.0
pip install --user tensorboardX six numpy tqdm scikit-learn

You can install attattr from source:

git clone https://github.com/YRdddream/attattr
cd attattr
pip install --user --editable .

Download Pre-Finetuned Models and Datasets

Before running self-attention attribution, you can first fine-tune bert-base-cased model on a downstream task (such as MNLI) by running the file run_classifier_orig.py. We also provide the example datasets and the pre-finetuned checkpoints at Google Drive.

Get Self-Attention Attribution Scores

Run the following command to get the self-attention attribution score and the self-attention score.

python examples/generate_attrscore.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 \
       --model_file ${model_file} --example_index ${example_index} \
       --get_att_attr --get_att_score --output_dir ${output_dir}

Construction of Attribution Tree

When you get the self-attribution scores of a target example, you could construct the attribution tree. We recommend you to run the file get_tokens_and_pred.py to summarize the data, or you can manually change the value of tokens in attribution_tree.py.

python examples/attribution_tree.py --attr_file ${attr_file} --tokens_file ${tokens_file} \
       --task_name ${task_name} --example_index ${example_index} 

You can generate the attribution tree from the provided example.

python examples/attribution_tree.py --attr_file ${model_and_data}/mnli_example/attr_zero_base_exp16.json \
       --tokens_file ${model_and_data}/mnli_example/tokens_and_pred_100.json \
       --task_name mnli --example_index 16

Self-Attention Head Pruning

We provide the code of pruning attention heads with both our attribution method and the Taylor expansion method. Pruning heads with our method.

python examples/prune_head_with_attr.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Pruning heads with Taylor expansion method.

python examples/prune_head_with_taylor.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Adversarial Attack

First extract the most important connections from the training dataset.

python examples/run_adver_connection.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 --zero_baseline \
       --model_file ${model_file} --output_dir ${output_dir}

Then use these adversarial triggers to attack the original model.

python examples/run_adver_evaluate.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file} \
       --output_dir ${output_dir} --pattern_file ${pattern_file}

Reference

If you find this repository useful for your work, you can cite the paper:

@inproceedings{attattr,
  author = {Yaru Hao and Li Dong and Furu Wei and Ke Xu},
  title = {Self-Attention Attribution: Interpreting Information Interactions Inside Transformer},
  booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence},
  publisher = {{AAAI} Press},
  year      = {2021},
  url       = {https://arxiv.org/pdf/2004.11207.pdf}
}
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022