Differentiable Optimizers with Perturbations in Pytorch

Overview

Differentiable Optimizers with Perturbations in PyTorch

This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tensorflow. All credit belongs to the original authors which can be found below. The source code, tests, and examples given below are a one-to-one copy of the original work, but with pure PyTorch implementations.

Overview

We propose in this work a universal method to transform any optimizer in a differentiable approximation. We provide a PyTorch implementation, illustrated here on some examples.

Perturbed argmax

We start from an original optimizer, an argmax function, computed on an example input theta.

import torch
import torch.nn.functional as F
import perturbations

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def argmax(x, axis=-1):
    return F.one_hot(torch.argmax(x, dim=axis), list(x.shape)[axis]).float()

This function returns a one-hot corresponding to the largest input entry.

>>> argmax(torch.tensor([-0.6, 1.9, -0.2, 1.1, -1.0]))
tensor([0., 1., 0., 0., 0.])

It is possible to modify the function by creating a perturbed optimizer, using Gumbel noise.

pert_argmax = perturbations.perturbed(argmax,
                                      num_samples=1000000,
                                      sigma=0.5,
                                      noise='gumbel',
                                      batched=False,
                                      device=device)
>>> theta = torch.tensor([-0.6, 1.9, -0.2, 1.1, -1.0], device=device)
>>> pert_argmax(theta)
tensor([0.0055, 0.8150, 0.0122, 0.1648, 0.0025], device='cuda:0')

In this particular case, it is equal to the usual softmax with exponential weights.

>>> sigma = 0.5
>>> F.softmax(theta/sigma, dim=-1)
tensor([0.0055, 0.8152, 0.0122, 0.1646, 0.0025], device='cuda:0')

Batched version

The original function can accept a batch dimension, and is applied to every element of the batch.

theta_batch = torch.tensor([[-0.6, 1.9, -0.2, 1.1, -1.0],
                            [-0.6, 1.0, -0.2, 1.8, -1.0]], device=device, requires_grad=True)
>>> argmax(theta_batch)
tensor([[0., 1., 0., 0., 0.],
        [0., 0., 0., 1., 0.]], device='cuda:0')

Likewise, if the argument batched is set to True (its default value), the perturbed optimizer can handle a batch of inputs.

pert_argmax = perturbations.perturbed(argmax,
                                      num_samples=1000000,
                                      sigma=0.5,
                                      noise='gumbel',
                                      batched=True,
                                      device=device)
>>> pert_argmax(theta_batch)
tensor([[0.0055, 0.8158, 0.0122, 0.1640, 0.0025],
        [0.0066, 0.1637, 0.0147, 0.8121, 0.0030]], device='cuda:0')

It can be compared to its deterministic version, the softmax.

>>> F.softmax(theta_batch/sigma, dim=-1)
tensor([[0.0055, 0.8152, 0.0122, 0.1646, 0.0025],
        [0.0067, 0.1639, 0.0149, 0.8116, 0.0030]], device='cuda:0')

Decorator version

It is also possible to use the perturbed function as a decorator.

@perturbations.perturbed(num_samples=1000000, sigma=0.5, noise='gumbel', batched=True, device=device)
def argmax(x, axis=-1):
  	return F.one_hot(torch.argmax(x, dim=axis), list(x.shape)[axis]).float()
>>> argmax(theta_batch)
tensor([[0.0054, 0.8148, 0.0121, 0.1652, 0.0024],
        [0.0067, 0.1639, 0.0148, 0.8116, 0.0029]], device='cuda:0')

Gradient computation

The Perturbed optimizers are differentiable, and the gradients can be computed with stochastic estimation automatically. In this case, it can be compared directly to the gradient of softmax.

output = pert_argmax(theta_batch)
square_norm = torch.linalg.norm(output)
square_norm.backward(torch.ones_like(square_norm))
grad_pert = theta_batch.grad
>>> grad_pert
tensor([[-0.0072,  0.1708, -0.0132, -0.1476, -0.0033],
        [-0.0068, -0.1464, -0.0173,  0.1748, -0.0046]], device='cuda:0')

Compared to the same computations with a softmax.

output = F.softmax(theta_batch/sigma, dim=-1)
square_norm = torch.linalg.norm(output)
square_norm.backward(torch.ones_like(square_norm))
grad_soft = theta_batch.grad
>>> grad_soft
tensor([[-0.0064,  0.1714, -0.0142, -0.1479, -0.0029],
        [-0.0077, -0.1457, -0.0170,  0.1739, -0.0035]], device='cuda:0')

Perturbed OR

The OR function over the signs of inputs, that is an example of optimizer, offers a well-interpretable visualization.

def hard_or(x):
    s = ((torch.sign(x) + 1) / 2.0).type(torch.bool)
    result = torch.any(s, dim=-1)
    return result.type(torch.float) * 2.0 - 1

In the following batch of two inputs, both instances are evaluated as True (value 1).

theta = torch.tensor([[-5., 0.2],
                      [-5., 0.1]], device=device)
>>> hard_or(theta)
tensor([1., 1.])

Computing a perturbed OR operator over 1000 samples shows the difference in value for these two inputs.

pert_or = perturbations.perturbed(hard_or,
                                  num_samples=1000,
                                  sigma=0.1,
                                  noise='gumbel',
                                  batched=True,
                                  device=device)
>>> pert_or(theta)
tensor([1.0000, 0.8540], device='cuda:0')

This can be vizualized more broadly, for values between -1 and 1, as well as the evaluated values of the gradient.

Perturbed shortest path

This framework can also be easily applied to more complex optimizers, such as a blackbox shortest paths solver (here the function shortest_path). We consider a small example on 9 nodes, illustrated here with the shortest path between 0 and 8 in bold, and edge costs labels.

We also consider a function of the perturbed solution: the weight of this solution on the edgebetween nodes 6 and 8.

A gradient of this function with respect to a vector of four edge costs (top-rightmost, between nodes 4, 5, 6, and 8) is automatically computed. This can be used to increase the weight on this edge of the solution by changing these four costs. This is challenging to do with first-order methods using only an original optimizer, as its gradient would be zero almost everywhere.

final_edges_costs = torch.tensor([0.4, 0.1, 0.1, 0.1], device=device, requires_grad=True)
weights = edge_costs_to_weights(final_edges_costs)

@perturbations.perturbed(num_samples=100000, sigma=0.05, batched=False, device=device)
def perturbed_shortest_path(weights):
    return shortest_path(weights, symmetric=False)

We obtain a perturbed solution to the shortest path problem on this graph, an average of solutions under perturbations on the weights.

>>> perturbed_shortest_path(weights)
tensor([[0.    0.    0.001 0.025 0.    0.    0.    0.    0.   ]
        [0.    0.    0.    0.    0.023 0.    0.    0.    0.   ]
        [0.679 0.    0.    0.119 0.    0.    0.    0.    0.   ]
        [0.304 0.    0.    0.    0.    0.    0.    0.    0.   ]
        [0.    0.023 0.    0.    0.    0.898 0.    0.    0.   ]
        [0.    0.    0.001 0.    0.    0.    0.896 0.    0.   ]
        [0.    0.    0.    0.    0.    0.001 0.    0.974 0.   ]
        [0.    0.    0.797 0.178 0.    0.    0.    0.    0.   ]
        [0.    0.    0.    0.    0.921 0.    0.079 0.    0.   ]])

For illustration, this solution can be represented with edge width proportional to the weight of the solution.

We consider an example of scalar function on this solution, here the weight of the perturbed solution on the edge from node 6 to 8 (of current value 0.079).

def i_to_j_weight_fn(i, j, paths):
    return paths[..., i, j]

weights = edge_costs_to_weights(final_edges_costs)
pert_paths = perturbed_shortest_path(weights)
i_to_j_weight = pert_paths[..., 8, 6]
i_to_j_weight.backward(torch.ones_like(i_to_j_weight))
grad = final_edges_costs.grad

This provides a direction in which to modify the vector of four edge costs, to increase the weight on this solution, obtained thanks to our perturbed version of the optimizer.

>>> grad
tensor([-2.0993764,  2.076386 ,  2.042395 ,  2.0411625], device='cuda:0')

Running gradient ascent for 30 steps on this vector of four edge costs to increase the weight of the edge from 6 to 8 modifies the problem. Its new perturbed solution has a corresponding edge weight of 0.989. The new problem and its perturbed solution can be vizualized as follows.

References

Berthet Q., Blondel M., Teboul O., Cuturi M., Vert J.-P., Bach F., Learning with Differentiable Perturbed Optimizers, NeurIPS 2020

License

Please see the original repository for proper details.

Owner
Jake Tuero
PhD student at University of Alberta
Jake Tuero
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022