Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

Related tags

Deep LearningToxiChat
Overview

ToxiChat

Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts".

Install dependencies

conda env create -f environment.yml

Data

The train, dev, test split of the data are given in data/OC_S_post_thread/ folder

Offensive and Stance Classification models

Single instance Offensive Classification

NBOW model

We will train NBOW single sentence classification model initialized with GloVe embedding
To train NBOW model, you'd need to download and extract GloVe vectors into data/GloVe/ dir and then run python convert_glove_text_vectors_to_pkl.py from within the directory

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_NBOW_offensive_classifier.py -g data/GloVe/glove.6B.300d.pkl -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/NBOW_OC_S_offensive_e30 -o results/OC_S_post_thread/NBOW_OC_S_offensive_e30 -e 30 -dv 1 -t

BERT large cased model

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_BERT_offensive_classifier.py -e 8 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/BERT_large_OC_S_offensive_e8 -o results/OC_S_post_thread/BERT_large_OC_S_offensive_e8 -t

Full Sequence Offensive Classification (DGPT)

We will train a DGPT model offensive classifier for the entire comment thread with EOS tokens used for sentence representations.

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_DGPT_offensive_classifier.py -e 12 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_offensive_e12 -o results/OC_S_post_thread/DGPT_medium_OC_S_offensive_e12 -t
  • Training offensive classifier on OC_S_post_thread + SBF data
    python experiments/train_and_evaluate_DGPT_offensive_classifier.py -e 3 -td "{'OC_S':'data/OC_S_post_thread/', 'SBF':'data/SBF'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -o results/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -t -dv 4

Stance Classification

Pairwise Stance Classification

NBOW model

We will train NBOW Sentence Pair classification model initialized with GloVe embedding

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_NBOW_pairwise_stance_classifier.py -g data/GloVe/glove.6B.300d.pkl -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/NBOW_OC_S_pairwise_stance_e30 -o results/OC_S_post_thread/NBOW_OC_S_pairwise_stance_e30 -e 30 -dv 1 -t

BERT large cased model

We will train Bert Sentence Pair classification model

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_BERT_pairwise_stance_classifier.py -e 8 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/BERT_large_OC_S_pairwise_stance_e8 -o results/OC_S_post_thread/BERT_large_OC_S_pairwise_stance_e8 -t

Full Sequence Stance Classification

We will train a DGPT model stance classifier for the entire comment thread with EOS tokens used for sentence representations.

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_DGPT_stance_classifier.py -e 12 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e12 -o results/OC_S_post_thread/DGPT_medium_OC_S_stance_e12 -t
  • Training Stance classifier on OC_S_post_thread_data (Focal Loss)
    python experiments/train_and_evaluate_DGPT_stance_classifier.py -e 16 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -o results/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -foc -lr 5e-5 -t

To download pretrained DGPT offensive and Stance (Focal) classifiers use the following link

Mitigating Offensive language using Controlled Text Generation

Dataset Preparation

We will first create a dataset of posts and comments from all of the reddit. Then we will create comment trees from these posts and comments and label them with our stance and offensive classifiers

Downloading the reddit posts and comments dumps

  1. Download the reddit comments and submissions dumps from August(08) to October(10), 2019 in the data folder
    mkdir -p data/reddit_dumps/comments_compressed
    cd data/reddit_dumps/comments_compressed
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-10.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-09.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-08.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-07.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-06.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-05.zst
    cd ..
    mkdir posts_compressed
    cd posts_compressed
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-10.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-09.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-08.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-07.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-06.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-05.zst
    cd ../../
    

Create posts and comments sample

  • python extract_reddit_posts.py -f data/reddit_dumps/posts_compressed/RS_2019-10.zst data/reddit_dumps/posts_compressed/RS_2019-09.zst data/reddit_dumps/posts_compressed/RS_2019-08.zst data/reddit_dumps/posts_compressed/RS_2019-07.zst data/reddit_dumps/posts_compressed/RS_2019-06.zst data/reddit_dumps/posts_compressed/RS_2019-05.zst -p 0.8 -o data/reddit_dumps/posts/all_mitigating_sample/
  • python extract_reddit_comments_for_posts.py -f data/reddit_dumps/comments_compressed/RC_2019-05.zst data/reddit_dumps/comments_compressed/RC_2019-06.zst data/reddit_dumps/comments_compressed/RC_2019-07.zst data/reddit_dumps/comments_compressed/RC_2019-08.zst data/reddit_dumps/comments_compressed/RC_2019-09.zst data/reddit_dumps/comments_compressed/RC_2019-10.zst -p data/reddit_dumps/posts/all_mitigating_sample/all_subreddit_posts.jsonl -o data/reddit_dumps/comments/all_mitigating_sample/

Create threads from posts and comments sample

python create_post_comment_trees_from_all_reddit_sample.py -ip data/reddit_dumps/posts/all_mitigating_sample/all_subreddit_posts.jsonl -ic data/reddit_dumps/comments/all_mitigating_sample/all_subreddit_post_related_comments.jsonl -mc 3 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/

Split the post comment threads into 4 splits

python split_threads_into_files.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/all_reddit_post_and_comments_3_threads.pkl -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/ -n 4

Predict separately for each split

  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_0.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_0_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_1.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_1_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_2.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_2_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_3.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_3_preds.pkl

Merge predictions

python merge_Off_Stance_predictions.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -n 4 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/merged_split_predictions.pkl

Create CTG fine-tuning dataset from post_comment threads with stance and offensive labels

python get_fine_tuning_subsets_from_label_predicted_convs.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/merged_split_predictions.pkl -o data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/

Fine-tune DGPT medium model for different CTG experiments

DAPT

CTG using DAPT i.e. simply training on the subset we care about

1. Off Control [SAFE] subset (DAPT - [S])

python experiments/CTG_DGPT_finetuner.py -so [SAFE] -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_dev.pkl -s saved_models/CTG/Off_control_DGPT_safe_subset -o results/CTG/Off_control_DGPT_safe_subset -e 3

2. Safe Stance Control [NO-STANCE] subset (DAPT - [S][N])

python experiments/CTG_DGPT_finetuner.py -so [NO-STANCE] -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_dev.pkl -s saved_models/CTG/safe_stance_control_DGPT_no_stance_subset -o results/CTG/safe_stance_control_DGPT_no_stance_subset -e 3

ATCON

CTG using control labels

1. Offensive Label Control (ATCON [S])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_dev.pkl -s saved_models/CTG/Off_control_DGPT -o results/CTG/Off_control_DGPT -e 3 -dv 100

2. Stance Label Control (Safe) (ATCON [N])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_dev.pkl -s saved_models/CTG/safe_stance_control_DGPT -o results/CTG/safe_stance_control_DGPT -e 3

3. Both Offensive and Stance Label Control (both) (ATCON [S][N])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/both_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/both_control_dev.pkl -s saved_models/CTG/both_control_DGPT -o results/CTG/both_control_DGPT -e 3

Generate Responses on test set using CTG models

Control labels [OFF]/[SAFE] and [AGREE]/[NO-STANCE]

  • Baseline No Control
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m microsoft/DialoGPT-medium -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -n 1 -bs 10 -o results/CTG/DGPT/test_threads_replies_and_off_stance_preds.pkl
  • DAPT Offensive Control Safe Subset (DAPT - [S])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/Off_control_DGPT_safe_subset -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/Off_control_DGPT/DAPT_Off_control_safe_subset_test_threads_replies_and_off_stance_preds.pkl
  • DAPT Safe Stance Control No-Stance Subset (DAPT - [S][N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/safe_stance_control_DGPT_no_stance_subset -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/safe_stance_control_DGPT/DAPT_safe_stance_control_no_stance_subset_test_threads_replies_and_off_stance_preds.pkl
  • Offensive Control (ATCON - [S])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/Off_control_DGPT -p [SAFE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/Off_control_DGPT/Off_control_test_threads_safe_replies_and_off_stance_preds.pkl
  • Stance Control (Safe) (ATCON - [N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/safe_stance_control_DGPT -p [NO-STANCE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/safe_stance_control_DGPT/safe_stance_control_test_threads_no_stance_replies_and_off_stance_preds.pkl
  • Both Control (ATCON - [S][N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/both_control_DGPT -p [SAFE][NO-STANCE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/both_control_DGPT/both_control_test_threads_safe_no_stance_replies_and_off_stance_preds.pkl

Automatic evalaution of CTG test predictions

python automatic_evaluation_of_CTG_test_predictions.py -mg "[('DGPT medium baseline', 'results/CTG/DGPT/test_threads_replies_and_off_stance_preds.pkl'), ('ATCON - [S]', 'results/CTG/Off_control_DGPT/Off_control_test_threads_safe_replies_and_off_stance_preds.pkl'), ('ATCON [N]', 'results/CTG/safe_stance_control_DGPT/safe_stance_control_test_threads_no_stance_replies_and_off_stance_preds.pkl'), ('ATCON [N][S]', 'results/CTG/both_control_DGPT/both_control_test_threads_safe_no_stance_replies_and_off_stance_preds.pkl'), ('DAPT [S]', 'results/CTG/Off_control_DGPT/DAPT_Off_control_safe_subset_test_threads_replies_and_off_stance_preds.pkl'), ('DAPT [S][N]', 'results/CTG/safe_stance_control_DGPT/DAPT_safe_stance_control_no_stance_subset_test_threads_replies_and_off_stance_preds.pkl')]" -o results/CTG/auto_eval/

Citation

@article{baheti2021just,
  title={Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts},
  author={Baheti, Ashutosh and Sap, Maarten and Ritter, Alan and Riedl, Mark},
  journal={arXiv preprint arXiv:2108.11830},
  year={2021}
}
Owner
Ashutosh Baheti
I am a Computer Science PhD student working with Prof. Alan Ritter. I will be a graduate student at Georgia Tech starting from Fall 2020.
Ashutosh Baheti
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022