Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

Related tags

Deep LearningToxiChat
Overview

ToxiChat

Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts".

Install dependencies

conda env create -f environment.yml

Data

The train, dev, test split of the data are given in data/OC_S_post_thread/ folder

Offensive and Stance Classification models

Single instance Offensive Classification

NBOW model

We will train NBOW single sentence classification model initialized with GloVe embedding
To train NBOW model, you'd need to download and extract GloVe vectors into data/GloVe/ dir and then run python convert_glove_text_vectors_to_pkl.py from within the directory

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_NBOW_offensive_classifier.py -g data/GloVe/glove.6B.300d.pkl -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/NBOW_OC_S_offensive_e30 -o results/OC_S_post_thread/NBOW_OC_S_offensive_e30 -e 30 -dv 1 -t

BERT large cased model

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_BERT_offensive_classifier.py -e 8 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/BERT_large_OC_S_offensive_e8 -o results/OC_S_post_thread/BERT_large_OC_S_offensive_e8 -t

Full Sequence Offensive Classification (DGPT)

We will train a DGPT model offensive classifier for the entire comment thread with EOS tokens used for sentence representations.

  • Training offensive classifier on OC_S_post_thread data
    python experiments/train_and_evaluate_DGPT_offensive_classifier.py -e 12 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_offensive_e12 -o results/OC_S_post_thread/DGPT_medium_OC_S_offensive_e12 -t
  • Training offensive classifier on OC_S_post_thread + SBF data
    python experiments/train_and_evaluate_DGPT_offensive_classifier.py -e 3 -td "{'OC_S':'data/OC_S_post_thread/', 'SBF':'data/SBF'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -o results/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -t -dv 4

Stance Classification

Pairwise Stance Classification

NBOW model

We will train NBOW Sentence Pair classification model initialized with GloVe embedding

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_NBOW_pairwise_stance_classifier.py -g data/GloVe/glove.6B.300d.pkl -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/NBOW_OC_S_pairwise_stance_e30 -o results/OC_S_post_thread/NBOW_OC_S_pairwise_stance_e30 -e 30 -dv 1 -t

BERT large cased model

We will train Bert Sentence Pair classification model

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_BERT_pairwise_stance_classifier.py -e 8 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/BERT_large_OC_S_pairwise_stance_e8 -o results/OC_S_post_thread/BERT_large_OC_S_pairwise_stance_e8 -t

Full Sequence Stance Classification

We will train a DGPT model stance classifier for the entire comment thread with EOS tokens used for sentence representations.

  • Training Stance classifier on OC_S_post_thread_data (cross entropy)
    python experiments/train_and_evaluate_DGPT_stance_classifier.py -e 12 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e12 -o results/OC_S_post_thread/DGPT_medium_OC_S_stance_e12 -t
  • Training Stance classifier on OC_S_post_thread_data (Focal Loss)
    python experiments/train_and_evaluate_DGPT_stance_classifier.py -e 16 -td "{'OC_S':'data/OC_S_post_thread/'}" -s saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -o results/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -foc -lr 5e-5 -t

To download pretrained DGPT offensive and Stance (Focal) classifiers use the following link

Mitigating Offensive language using Controlled Text Generation

Dataset Preparation

We will first create a dataset of posts and comments from all of the reddit. Then we will create comment trees from these posts and comments and label them with our stance and offensive classifiers

Downloading the reddit posts and comments dumps

  1. Download the reddit comments and submissions dumps from August(08) to October(10), 2019 in the data folder
    mkdir -p data/reddit_dumps/comments_compressed
    cd data/reddit_dumps/comments_compressed
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-10.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-09.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-08.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-07.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-06.zst
    wget -nc https://files.pushshift.io/reddit/comments/RC_2019-05.zst
    cd ..
    mkdir posts_compressed
    cd posts_compressed
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-10.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-09.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-08.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-07.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-06.zst
    wget -nc https://files.pushshift.io/reddit/submissions/RS_2019-05.zst
    cd ../../
    

Create posts and comments sample

  • python extract_reddit_posts.py -f data/reddit_dumps/posts_compressed/RS_2019-10.zst data/reddit_dumps/posts_compressed/RS_2019-09.zst data/reddit_dumps/posts_compressed/RS_2019-08.zst data/reddit_dumps/posts_compressed/RS_2019-07.zst data/reddit_dumps/posts_compressed/RS_2019-06.zst data/reddit_dumps/posts_compressed/RS_2019-05.zst -p 0.8 -o data/reddit_dumps/posts/all_mitigating_sample/
  • python extract_reddit_comments_for_posts.py -f data/reddit_dumps/comments_compressed/RC_2019-05.zst data/reddit_dumps/comments_compressed/RC_2019-06.zst data/reddit_dumps/comments_compressed/RC_2019-07.zst data/reddit_dumps/comments_compressed/RC_2019-08.zst data/reddit_dumps/comments_compressed/RC_2019-09.zst data/reddit_dumps/comments_compressed/RC_2019-10.zst -p data/reddit_dumps/posts/all_mitigating_sample/all_subreddit_posts.jsonl -o data/reddit_dumps/comments/all_mitigating_sample/

Create threads from posts and comments sample

python create_post_comment_trees_from_all_reddit_sample.py -ip data/reddit_dumps/posts/all_mitigating_sample/all_subreddit_posts.jsonl -ic data/reddit_dumps/comments/all_mitigating_sample/all_subreddit_post_related_comments.jsonl -mc 3 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/

Split the post comment threads into 4 splits

python split_threads_into_files.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/all_reddit_post_and_comments_3_threads.pkl -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/ -n 4

Predict separately for each split

  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_0.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_0_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_1.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_1_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_2.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_2_preds.pkl
  • python predict_DGPT_stance_on_post_comment_trees.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/split_3.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -s data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/split_3_preds.pkl

Merge predictions

python merge_Off_Stance_predictions.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/ -n 4 -o data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/merged_split_predictions.pkl

Create CTG fine-tuning dataset from post_comment threads with stance and offensive labels

python get_fine_tuning_subsets_from_label_predicted_convs.py -i data/reddit_dumps/post_comment_threads/all_mitigating_sample/splits/predictions_both/merged_split_predictions.pkl -o data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/

Fine-tune DGPT medium model for different CTG experiments

DAPT

CTG using DAPT i.e. simply training on the subset we care about

1. Off Control [SAFE] subset (DAPT - [S])

python experiments/CTG_DGPT_finetuner.py -so [SAFE] -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_dev.pkl -s saved_models/CTG/Off_control_DGPT_safe_subset -o results/CTG/Off_control_DGPT_safe_subset -e 3

2. Safe Stance Control [NO-STANCE] subset (DAPT - [S][N])

python experiments/CTG_DGPT_finetuner.py -so [NO-STANCE] -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_dev.pkl -s saved_models/CTG/safe_stance_control_DGPT_no_stance_subset -o results/CTG/safe_stance_control_DGPT_no_stance_subset -e 3

ATCON

CTG using control labels

1. Offensive Label Control (ATCON [S])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/off_control_dev.pkl -s saved_models/CTG/Off_control_DGPT -o results/CTG/Off_control_DGPT -e 3 -dv 100

2. Stance Label Control (Safe) (ATCON [N])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/safe_stance_control_dev.pkl -s saved_models/CTG/safe_stance_control_DGPT -o results/CTG/safe_stance_control_DGPT -e 3

3. Both Offensive and Stance Label Control (both) (ATCON [S][N])

python experiments/CTG_DGPT_finetuner.py -t data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/both_control_train.pkl -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/both_control_dev.pkl -s saved_models/CTG/both_control_DGPT -o results/CTG/both_control_DGPT -e 3

Generate Responses on test set using CTG models

Control labels [OFF]/[SAFE] and [AGREE]/[NO-STANCE]

  • Baseline No Control
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m microsoft/DialoGPT-medium -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e3 -n 1 -bs 10 -o results/CTG/DGPT/test_threads_replies_and_off_stance_preds.pkl
  • DAPT Offensive Control Safe Subset (DAPT - [S])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/Off_control_DGPT_safe_subset -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/Off_control_DGPT/DAPT_Off_control_safe_subset_test_threads_replies_and_off_stance_preds.pkl
  • DAPT Safe Stance Control No-Stance Subset (DAPT - [S][N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/safe_stance_control_DGPT_no_stance_subset -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/safe_stance_control_DGPT/DAPT_safe_stance_control_no_stance_subset_test_threads_replies_and_off_stance_preds.pkl
  • Offensive Control (ATCON - [S])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/Off_control_DGPT -p [SAFE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/Off_control_DGPT/Off_control_test_threads_safe_replies_and_off_stance_preds.pkl
  • Stance Control (Safe) (ATCON - [N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/safe_stance_control_DGPT -p [NO-STANCE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/safe_stance_control_DGPT/safe_stance_control_test_threads_no_stance_replies_and_off_stance_preds.pkl
  • Both Control (ATCON - [S][N])
    python generate_CTG_responses_and_make_off_and_stance_predictions.py -m saved_models/CTG/both_control_DGPT -p [SAFE][NO-STANCE] -d data/reddit_dumps/post_comment_threads/CTG_experiments/all_mitigating_sample/final/test_threads.pkl -sm saved_models/OC_S_post_thread/DGPT_medium_OC_S_stance_e16_focal_lr5e_5 -om saved_models/OC_S_post_thread/DGPT_medium_OC_S_and_SBF_offensive_e2 -n 1 -bs 10 -o results/CTG/both_control_DGPT/both_control_test_threads_safe_no_stance_replies_and_off_stance_preds.pkl

Automatic evalaution of CTG test predictions

python automatic_evaluation_of_CTG_test_predictions.py -mg "[('DGPT medium baseline', 'results/CTG/DGPT/test_threads_replies_and_off_stance_preds.pkl'), ('ATCON - [S]', 'results/CTG/Off_control_DGPT/Off_control_test_threads_safe_replies_and_off_stance_preds.pkl'), ('ATCON [N]', 'results/CTG/safe_stance_control_DGPT/safe_stance_control_test_threads_no_stance_replies_and_off_stance_preds.pkl'), ('ATCON [N][S]', 'results/CTG/both_control_DGPT/both_control_test_threads_safe_no_stance_replies_and_off_stance_preds.pkl'), ('DAPT [S]', 'results/CTG/Off_control_DGPT/DAPT_Off_control_safe_subset_test_threads_replies_and_off_stance_preds.pkl'), ('DAPT [S][N]', 'results/CTG/safe_stance_control_DGPT/DAPT_safe_stance_control_no_stance_subset_test_threads_replies_and_off_stance_preds.pkl')]" -o results/CTG/auto_eval/

Citation

@article{baheti2021just,
  title={Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts},
  author={Baheti, Ashutosh and Sap, Maarten and Ritter, Alan and Riedl, Mark},
  journal={arXiv preprint arXiv:2108.11830},
  year={2021}
}
Owner
Ashutosh Baheti
I am a Computer Science PhD student working with Prof. Alan Ritter. I will be a graduate student at Georgia Tech starting from Fall 2020.
Ashutosh Baheti
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022