Robust fine-tuning of zero-shot models

Related tags

Deep Learningwise-ft
Overview

Robust fine-tuning of zero-shot models

This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabriel Ilharco*, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, Ludwig Schmidt.

Abstract

Large pre-trained models such as CLIP offer consistent accuracy across a range of data distributions when performing zero-shot inference (i.e., without fine-tuning on a specific dataset). Although existing fine-tuning approaches substantially improve accuracy in-distribution, they also reduce out-of-distribution robustness. We address this tension by introducing a simple and effective method for improving robustness: ensembling the weights of the zero-shot and fine-tuned models. Compared to standard fine-tuning, the resulting weight-space ensembles provide large accuracy improvements out-of-distribution, while matching or improving in-distribution accuracy. On ImageNet and five derived distribution shifts, weight-space ensembles improve out-of-distribution accuracy by 2 to 10 percentage points while increasing in-distribution accuracy by nearly 1 percentage point relative to standard fine-tuning. These improvements come at no additional computational cost during fine-tuning or inference.

Summary figure

figure1

Compared to standard fine-tuning, weight-space ensembles for fine-tuning (WiSE-FT) improve out-of-distribution (OOD) accuracy without decreasing in-distribution (ID) performance. Top left: Zero-shot CLIP models exhibit high effective robustness and moderate in-distribution accuracy, while standard fine-tuning (end-to-end or with a linear classifier) attains higher ID accuracy and less effective robustness. Top right: Our method linearly interpolates between the zero-shot and fine-tuned models with a mixing coefficient alpha in [0,1]. Bottom: On five distribution shifts derived from ImageNet (ImageNetV2, ImageNet-R, ImageNet Sketch, ObjectNet, and ImageNet-A), WiSE-FT improves average OOD accuracy by 8.7 percentage points (pp) when fine-tuning end-to-end (+2.1 pp when fine-tuning a linear classifier) while maintaining ID accuracy.

Code

Overview

WiSE-FT can be implemented in a few lines of code in addition to standard fine-tuning, as shown below. See src/wise_ft.py for more details.

# Load models
zeroshot = ImageClassifier.load(zeroshot_checkpoint)
finetuned = ImageClassifier.load(finetuned_checkpoint)
theta_0 = zeroshot.state_dict()
theta_1 = finetuned.state_dict()

# make sure checkpoints are compatible
assert set(theta_0.keys()) == set(theta_1.keys())

# interpolate between checkpoints with mixing coefficient alpha
theta = {
    key: (1-alpha) * theta_0[key] + alpha * theta_1[key]
    for key in theta_0.keys()
}

# update the model acccording to the new weights
finetuned.load_state_dict(theta)

# evaluate
evaluate(finetuned, args)

Install dependencies

conda env create
conda activate wiseft

Add directory to PYTHONPATH:

cd wise-ft
export PYTHONPATH="$PYTHONPATH:$PWD"

Download data

When necessary, please refer to datasets.md for instructions on how to download datasets.

Run WiSE-FT

Sample command when zeroshot and fine-tuned models are available:

python src/wise_ft.py   \
    --eval-datasets=ImageNet,ImageNetV2,ImageNetR,ImageNetA,ImageNetSketch  \
    --load=models/zeroshot.pt,models/finetuned.pt  \
    --results-db=results.jsonl  \
    --save=models/wiseft  \
    --data-location=~/data \
    --alpha 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sample command for running WiSE-FT from scratch using ViT-B/32:

python src/wise_ft.py   \
    --train-dataset=ImageNet  \
    --epochs=10  \
    --lr=0.00003  \
    --batch-size=512  \
    --cache-dir=cache  \
    --model=ViT-B/32  \
    --eval-datasets=ImageNet,ImageNetV2,ImageNetR,ImageNetA,ImageNetSketch  \
    --template=openai_imagenet_template  \
    --results-db=results.jsonl  \
    --save=models/wiseft/ViTB32  \
    --data-location=~/data \
    --alpha 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Note: the flag --freeze-encoder controls whether only a linear classifier is fine-tuned, or if all weights are fine-tuned (end-to-end).

Plotting results

Sample command for generating a scatter plot:

python src/scatter_plot.py  \
    --eval-datasets=ImageNetV2,ImageNetR,ImageNetA,ImageNetSketch  \
    --results-db=results.jsonl  \
    --save plots

We show samples of expected behavior below when running the commands above using ViT-B/16 (models can be downloaded here):

ImageNet-Sketch         ImageNet-A

ImageNet-R         ImageNetV2

ObjectNet

Citing

If you found this repository useful, please consider citing:

@article{wortsman2021robust,
  title={Robust fine-tuning of zero-shot models},
  author={Wortsman, Mitchell and Ilharco, Gabriel and Kim, Jong Wook and Li, Mike and Kornblith, Simon and Roelofs, Rebecca and Gontijo-Lopes, Raphael and Hajishirzi, Hannaneh and Farhadi, Ali and Namkoong, Hongseok and Schmidt, Ludwig},
  journal={arXiv preprint arXiv:2109.01903},
  note={\url{https://arxiv.org/abs/2109.01903}},
  year={2021}
}
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023