Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Overview

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Official implementation of the paper

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation
ICCV 2021 [oral]
Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla
[arXiv]

The proposed method estimates the per-pixel surface normal probability distribution, from which the expected angular error can be inferred to quantify the aleatoric uncertainty. We also introduce a novel decoder framework where pixel-wise MLPs are trained on a subset of pixels selected based on the uncertainty. Such uncertainty-guided sampling prevents the bias in training towards large planar surfaces, thereby improving the level of the detail in the prediction.

Getting Started

We recommend using a virtual environment.

python3.6 -m venv --system-site-packages ./venv
source ./venv/bin/activate

Install the necessary dependencies by

python3.6 -m pip install -r requirements.txt

Download the pre-trained model weights and sample images.

python download.py && cd examples && unzip examples.zip && cd ..

Running the above will download

  • ./checkpoints/nyu.pt (model trained on NYUv2)
  • ./checkpoints/scannet.pt (model trained on ScanNet)
  • ./examples/*.png (sample images)

Run Demo

To test on your own images, please add them under ./examples/. The images should be in .png or .jpg.

Test using the network trained on NYUv2. We used the ground truth and data split provided by GeoNet.

Please note that the ground truth for NYUv2 is only defined for the center crop of image. The prediction is therefore not accurate outside the center. When testing on your own images, we recommend using the network trained on ScanNet.

python test.py --pretrained nyu --architecture GN

Test using the network trained on ScanNet. We used the ground truth and data split provided by FrameNet.

python test.py --pretrained scannet --architecture BN

Running the above will save the predicted surface normal and uncertainty under ./examples/results/. If successful, you will obtain images like below.

The predictions in the figure above are obtained by the network trained only on ScanNet. The network generalizes well to objects unseen during training (e.g., humans, cars, animals). The last row shows interesting examples where the input image only contains edges.

Citation

If you find our work useful in your research please consider citing our paper:

@InProceedings{Bae2021,
    title   = {Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation}
    author  = {Gwangbin Bae and Ignas Budvytis and Roberto Cipolla},
    booktitle = {International Conference on Computer Vision (ICCV)},
    year = {2021}                         
}
Owner
Bae, Gwangbin
PhD student in Computer Vision @ University of Cambridge
Bae, Gwangbin
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022