Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Related tags

Deep LearningINADE
Overview

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021)

Architecture

Paper

Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu, [Bin Liu], Gang Hua, Nenghai Yu

Abstract

Semantic image synthesis, translating semantic layouts to photo-realistic images, is a one-to-many mapping problem. Though impressive progress has been recently made, diverse semantic synthesis that can efficiently produce semantic-level multimodal results, still remains a challenge. In this paper, we propose a novel diverse semantic image synthesis framework from the perspective of semantic class distributions, which naturally supports diverse generation at semantic or even instance level. We achieve this by modeling class-level conditional modulation parameters as continuous probability distributions instead of discrete values, and sampling per-instance modulation parameters through instance-adaptive stochastic sampling that is consistent across the network. Moreover, we propose prior noise remapping, through linear perturbation parameters encoded from paired references, to facilitate supervised training and exemplar-based instance style control at test time. Extensive experiments on multiple datasets show that our method can achieve superior diversity and comparable quality compared to state-of-the-art methods.

Installation

Clone this repo.

git clone https://github.com/tzt101/INADE.git
cd INADE/

This code requires PyTorch 1.6 and python 3+. Please install dependencies by

pip install -r requirements.txt

Dataset Preparation

The Cityscapes and ADE20K dataset can be downloaded and prepared following SPADE. The CelebAMask-HQ can be downloaded from CelebAMask-HQ, you need to to integrate the separated annotations into an image file (the format like other datasets, e.g. Cityscapes and ADE20K). The DeepFashion can be downloaded from SMIS, and the version with two persons can be downloaded from OneDrive.

To make or reid the instance map, you can use the following commands:

python make_instances.py --path [Path_to_dataset] --dataset [ade20k | cityscapes | celeba | deepfashion]

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the pretrained models from the OneDrive, save it in checkpoints/. The structure is as follows:
./checkpoints/
    inade_ade20k/
        best_net_G.pth
        best_net_IE.pth
    inade_celeba/
        best_net_G.pth
        best_net_IE.pth
    inade_cityscapes/
        best_net_G.pth
        best_net_IE.pth
    inade_deepfashion/
        best_net_G.pth
        best_net_IE.pth

The noise_nc is 64 for all pretrained models except which on deepfashion (set to 8). Because we find that it's enough for quality and diversity.

  1. Generate the images on the test dataset.
python test.py --name [model_name] --norm_mode inade --batchSize 1 --gpu_ids 0 --which_epoch best --dataset_mode [dataset] --dataroot [Path_to_dataset]

[model_name] is the directory name of the checkpoint file downloaded in Step 1, such as inade_ade20k and inade_cityscapes. [dataset] can be on of ade20k, celeba, cityscapes and deepfashion. [Path_to_dataset] is the path to the dataset. If you want to use encoder, you can add the another option --use_vae.

Training New Models

You can train your own model with the following command:

# To train CLADE and CLADE-ICPE.
python train.py --name [experiment_name] --dataset_mode [dataset] --norm_mode inade --use_vae --dataroot [Path_to_dataset]

If you want to test the model during the training step, please set --train_eval. By default, the model every 10 epoch will be test in terms of FID. Finally, the model with best FID score will be saved as best_net_G.pth.

Calculate FID

We provide the code to calculate the FID which is based on rpo. We have pre-calculated the distribution of real images (all images are resized to 256×256 except cityscapes is 512×256) in training set of each dataset and saved them in ./datasets/train_mu_si/. You can run the following command:

python fid_score.py [Path_to_real_image] [Path_to_fake_image] --batch-size 1 --gpu 0 --load_np_name [dataset] --resize_size [Size]

The provided [dataset] are: ade20k, celeba, cityscapes, coco and deepfashion. You can save the new dataset by replacing --load_np_name [dataset] with --save_np_name [dataset].

New Useful Options

The new options are as follows:

  • --use_amp: if specified, use AMP training mode.
  • --train_eval: if sepcified, evaluate the model during training.
  • --eval_dims: the default setting is 2048, Dimensionality of Inception features to use.
  • --eval_epoch_freq: the default setting is 10, frequency of calculate fid score at the end of epochs.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses
  • models/networks/: defines the architecture of all models
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{tan2021diverse,
  title={Diverse Semantic Image Synthesis via Probability Distribution Modeling},
  author={Tan, Zhentao and Chai, Menglei and Chen, Dongdong and Liao, Jing and Chu, Qi and Liu, Bin and Hua, Gang and Yu, Nenghai},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7962--7971},
  year={2021}
}

Acknowledgments

This code borrows heavily from SPADE.

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022