Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

Overview

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022)

https://arxiv.org/abs/2203.08483

Unpaired image-to-image (I2I) translation often requires to maximize the mutual information between the source and the translated images across different domains, which is critical for the generator to keep the source content and prevent it from unnecessary modifications. The self-supervised contrastive learning has already been successfully applied in the I2I. By constraining features from the same location to be closer than those from different ones, it implicitly ensures the result to take content from the source. However, previous work uses the features from random locations to impose the constraint, which may not be appropriate since some locations contain less information of source domain. Moreover, the feature itself does not reflect the relation with others. This paper deals with these problems by intentionally selecting significant anchor points for contrastive learning. We design a query-selected attention (QS-Attn) module, which compares feature distances in the source domain, giving an attention matrix with a probability distribution in each row. Then we select queries according to their measurement of significance, computed from the distribution. The selected ones are regarded as anchors for contrastive loss. At the same time, the reduced attention matrix is employed to route features in both domains, so that source relations maintain in the synthesis. We validate our proposed method in three different I2I datasets, showing that it increases the image quality without adding learnable parameters.



QS-Attn applies attention to select anchors for contrastive learning in single-direction I2I task

Getting Started

Prerequisites

  • Ubuntu 16.04
  • NVIDIA GPU + CUDA CuDNN
  • Python 3 Please use pip install -r requirements.txt to install the dependencies.

Pretrained Models

We provide Global, Local and Global+Local models for three datasets.

Model Cityscapes Horse2zebra AFHQ
Global Cityscapes_Global Horse2zebra_Global AFHQ_Global
Local Cityscapes_Local Horse2zebra_Local AFHQ_Local
Global+Local Cityscapes_Global+Local Horse2zebra_Global+Local AFHQ_Global+Local

Training

  • Download horse2zebra dataset :
bash ./datasets/download_qsattn_dataset.sh horse2zebra
  • Train the global model:
python train.py \
--dataroot=datasets/horse2zebra \
--name=horse2zebra_global \
--QS_mode=global
  • You can use visdom to view the training loss: Run python -m visdom.server and click the URL http://localhost:8097.

Inference

  • Test the global model:
python test.py \
--dataroot=datasets/horse2zebra \
--name=horse2zebra_qsattn_global \
--QS_mode=global

Citation

If you use this code for your research, please cite

@article{hu2022qs,
  title={QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation},
  author={Hu, Xueqi and Zhou, Xinyue and Huang, Qiusheng and Shi, Zhengyi and Sun, Li and Li, Qingli},
  journal={arXiv preprint arXiv:2203.08483},
  year={2022}
}
Owner
Xueqi Hu
Xueqi Hu
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Vikrant Deshpande 1 Nov 17, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023