Semantic Bottleneck Scene Generation

Related tags

Deep LearningSB-GAN
Overview

SB-GAN

Semantic Bottleneck Scene Generation

Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the flexibility of unconditional generative models, we propose a semantic bottleneck GAN model for unconditional synthesis of complex scenes. We assume pixel-wise segmentation labels are available during training and use them to learn the scene structure. During inference, our model first synthesizes a realistic segmentation layout from scratch, then synthesizes a realistic scene conditioned on that layout. For the former, we use an unconditional progressive segmentation generation network that captures the distribution of realistic semantic scene layouts. For the latter, we use a conditional segmentation-to-image synthesis network that captures the distribution of photo-realistic images conditioned on the semantic layout. When trained end-to-end, the resulting model outperforms state-of-the-art generative models in unsupervised image synthesis on two challenging domains in terms of the Frechet Inception Distance and user-study evaluations. Moreover, we demonstrate the generated segmentation maps can be used as additional training data to strongly improve recent segmentation-to-image synthesis networks.

Paper

[Paper 3.5MB]  [arXiv]

Code

Prerequisites:

  • NVIDIA GPU + CUDA CuDNN
  • Python 3.6
  • PyTorch 1.0
  • Please install dependencies by
pip install -r requirements.txt

Preparation

  • Clone this repo with its submodules
git clone --recurse-submodules -j8 https://github.com/azadis/SB-GAN.git
cd SB-GAN/SPADE/models/networks/
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../../

Datasets

ADE-Indoor

  • To have access to the indoor images from the ADE20K dataset and their corresponding segmentation maps used in our paper:
cd SB-GAN
bash SBGAN/datasets/download_ade.sh
cd ..

Cityscapes

cd SB-GAN/SBGAN/datasets
mkdir cityscapes
cd cityscapes
  • Download and unzip leftImg8bit_trainvaltest.zip and gtFine_trainvaltest.zip from the Cityscapes webpage .
mv leftImg8bit_trainvaltest/leftImg8bit ./
mv gtFine_trainvaltest/gtFine ./

Cityscapes-25k

  • In addition to the 5K portion already downloaded, download and unzip leftImg8bit_trainextra.zip. You can have access to the fine annotations of these 20K images we used in our paper by:
wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/drn_d_105_000_test.tar.gz
tar -xzvf drn_d_105_000_test.tar.gz

These annotations are predicted by a DRN trained on the 5K fine-annotated portion of Cityscapes with 19 semantic categories. The new fine annotations of the 5K portion with 19 semantic classes can be also downloaded by:

wget https://people.eecs.berkeley.edu/~sazadi/SBGAN/datasets/gtFine_new.tar.gz
tar -xzvf gtFine_new.tar.gz
cd ../../../..

Training

cd SB-GAN/SBGAN

  • On each $dataset in ade_indoor, cityscapes, cityscapes_25k:
  1. Semantic bottleneck synthesis:
bash SBGAN/scipts/$dataset/train_progressive_seg.sh
  1. Semantic image synthesis:
cd ../SPADE
bash scripts/$dataset/train_spade.sh
  1. Train the end2end SBGAN model:
cd ../SBGAN
bash SBGAN/scripts/$dataset/train_finetune_end2end.sh
  • In the above script, set $pro_iter to the iteration number of the checkpoint saved from step 1 that you want to use before fine-tuning. Also, set $spade_epoch to the last epoch saved for SPADE from step 2.
  • To visualize the training you have started in steps 1 and 3 on a ${date-time}, run the following commands. Then, open http://localhost:6006/ on your web browser.
cd SBGAN/logs/${date-time}
tensorboard --logdir=. --port=6006

Testing

To compute FID after training the end2end model, for each $dataset, do:

bash SBGAN/scripts/$dataset/test_finetune_end2end.sh
  • In the above script, set $pro_iter and $spade_epoch to the appropriate checkpoints saved from your end2end training.

Citation

If you use this code, please cite our paper:

@article{azadi2019semantic,
  title={Semantic Bottleneck Scene Generation},
  author={Azadi, Samaneh and Tschannen, Michael and Tzeng, Eric and Gelly, Sylvain and Darrell, Trevor and Lucic, Mario},
  journal={arXiv preprint arXiv:1911.11357},
  year={2019}
}
Owner
Samaneh Azadi
CS PhD student at UC Berkeley
Samaneh Azadi
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022