PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

Overview

StarEnhancer

StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral)

Abstract: Image enhancement is a subjective process whose targets vary with user preferences. In this paper, we propose a deep learning-based image enhancement method covering multiple tonal styles using only a single model dubbed StarEnhancer. It can transform an image from one tonal style to another, even if that style is unseen. With a simple one-time setting, users can customize the model to make the enhanced images more in line with their aesthetics. To make the method more practical, we propose a well-designed enhancer that can process a 4K-resolution image over 200 FPS but surpasses the contemporaneous single style image enhancement methods in terms of PSNR, SSIM, and LPIPS. Finally, our proposed enhancement method has good interactability, which allows the user to fine-tune the enhanced image using intuitive options.

StarEnhancer

Getting started

Install

We test the code on PyTorch 1.8.1 + CUDA 11.1 + cuDNN 8.0.5, and close versions also work fine.

pip install -r requirements.txt

We mainly train the model on RTX 2080Ti * 4, but a smaller mini batch size can also work.

Prepare

You can generate your own dataset, or download the one we generate.

The final file path should be the same as the following:

┬─ save_model
│   ├─ stylish.pth.tar
│   └─ ... (model & embedding)
└─ data
    ├─ train
    │   ├─ 01-Experts-A
    │   │   ├─ a0001.jpg
    │   │   └─ ... (id.jpg)
    │   └─ ... (style folder)
    ├─ valid
    │   └─ ... (style folder)
    └─ test
        └─ ... (style folder)

Download

Data and pretrained models are available on GoogleDrive.

Generate

  1. Download raw data from MIT-Adobe FiveK Dataset.
  2. Download the modified Lightroom database fivek.lrcat, and replace the original database with it.
  3. Generate dataset in JPEG format with quality 100, which can refer to this issue.
  4. Run generate_dataset.py in data folder to generate dataset.

Train

Firstly, train the style encoder:

python train_stylish.py

Secondly, fetch the style embedding for each sample in the train set:

python fetch_embedding.py

Lastly, train the curve encoder and mapping network:

python train_enhancer.py

Test

Just run:

python test.py

Testing LPIPS requires about 10 GB GPU memory, and if an OOM occurs, replace the following lines

lpips_val = loss_fn_alex(output * 2 - 1, target_img * 2 - 1).item()

with

lpips_val = 0

Notes

Due to agreements, we are unable to release part of the source code. This repository provides a pure python implementation for research use. There are some differences between the repository and the paper as follows:

  1. The repository uses a ResNet-18 w/o BN as the curve encoder's backbone, and the paper uses a more lightweight model.
  2. The paper uses CUDA to implement the color transform function, and the repository uses torch.gather to implement it.
  3. The repository removes some tricks used in training lightweight models.

Overall, this repository can achieve higher performance, but will be slightly slower.

Comments
  • Multi-style, unpaired setting

    Multi-style, unpaired setting

    您好,在多风格非配对图场景,能否交换source和target的位置,并将得到的output_A和output_B进一步经过enhancer,得到recover_A和recover_B。最后计算l1_loss(source, recover_A)和l1_loss(target, recover_B)及Triplet_loss(output_A,target, source) 和 Triplet_loss(output_B,source,target)

    def train(train_loader, mapping, enhancer, criterion, optimizer):
        losses = AverageMeter()
        criterionTriplet = torch.nn.TripletMarginLoss(margin=1.0, p=2)
        FEModel = Feature_Extract_Model().cuda()
    
        mapping.train()
        enhancer.train()
    
        for (source_img, source_center, target_img, target_center) in train_loader:
            source_img = source_img.cuda(non_blocking=True)
            source_center = source_center.cuda(non_blocking=True)
            target_img = target_img.cuda(non_blocking=True)
            target_center = target_center.cuda(non_blocking=True)
    
            style_A = mapping(source_center)
            style_B = mapping(target_center)
    
            output_A = enhancer(source_img, style_A, style_B)
            output_B = enhancer(target_img, style_B, style_A)
            recoverA = enhancer(output_A, style_B, style_A)
            recoverB = enhancer(output_B, style_A, style_B)
    
            source_img_feature = FEModel(source_img)
            target_img_feature = FEModel(target_img)
            output_A_feature = FEModel(output_A)
            output_B_feature = FEModel(output_B)
    
            loss_l1 = criterion(recoverA, source_img) + criterion(recoverB, target_img)
            loss_triplet = criterionTriplet(output_B_feature, source_img_feature, target_img_feature) + \
                           criterionTriplet(output_A_feature, target_img_feature, source_img_feature)
            loss = loss_l1 + loss_triplet
    
            losses.update(loss.item(), args.t_batch_size)
    
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
        return losses.avg
    
    opened by jxust01 4
  • Questions about dataset preparation

    Questions about dataset preparation

    您好,我想用您的工程跑一下自己的数据,现在有输入,输出一组数据对,训练数据里面A-E剩下的4种效果是怎样生成的呢,这些目标效果数据能否是非成对的呢?如果只有一种风格,能否A-E目标效果都拷贝成一样的数据呢,在train_enhancer.py所训练的单风格脚本是需要embeddings.npy文件,这个文件在单风格训练时是必须的吗

    opened by zener90818 4
  • Dataset processing

    Dataset processing

    你好,我在您提供的fivek.lrcat没找到 DeepUPE issue里的"(default) input with ExpertC"。请问单风格实验的输入是下图中的“InputAsShotZeroed”还是“(Q)InputZeroed with ExpertC WhiteBalance” image

    opened by madfff 2
  • Configure Renovate

    Configure Renovate

    WhiteSource Renovate

    Welcome to Renovate! This is an onboarding PR to help you understand and configure settings before regular Pull Requests begin.

    🚦 To activate Renovate, merge this Pull Request. To disable Renovate, simply close this Pull Request unmerged.


    Detected Package Files

    • requirements.txt (pip_requirements)

    Configuration Summary

    Based on the default config's presets, Renovate will:

    • Start dependency updates only once this onboarding PR is merged
    • Enable Renovate Dependency Dashboard creation
    • If semantic commits detected, use semantic commit type fix for dependencies and chore for all others
    • Ignore node_modules, bower_components, vendor and various test/tests directories
    • Autodetect whether to pin dependencies or maintain ranges
    • Rate limit PR creation to a maximum of two per hour
    • Limit to maximum 20 open PRs at any time
    • Group known monorepo packages together
    • Use curated list of recommended non-monorepo package groupings
    • Fix some problems with very old Maven commons versions
    • Ignore spring cloud 1.x releases
    • Ignore http4s digest-based 1.x milestones
    • Use node versioning for @types/node
    • Limit concurrent requests to reduce load on Repology servers until we can fix this properly, see issue 10133

    🔡 Would you like to change the way Renovate is upgrading your dependencies? Simply edit the renovate.json in this branch with your custom config and the list of Pull Requests in the "What to Expect" section below will be updated the next time Renovate runs.


    What to Expect

    With your current configuration, Renovate will create 1 Pull Request:

    Pin dependency torch to ==1.10.0
    • Schedule: ["at any time"]
    • Branch name: renovate/pin-dependencies
    • Merge into: main
    • Pin torch to ==1.10.0

    ❓ Got questions? Check out Renovate's Docs, particularly the Getting Started section. If you need any further assistance then you can also request help here.


    This PR has been generated by WhiteSource Renovate. View repository job log here.

    opened by renovate[bot] 1
  • The results are not the same as the paper

    The results are not the same as the paper

    I am the author.

    Some peers have emailed me asking about the performance of the open source model that does not agree with the results in the paper. As stated in the README, the model is not the model of the paper, but the performance is similar. The exact result should be: PSNR: 25.41, SSIM: 0.942, LPIPS: 0.085

    If you find that your result is not this, then it may be that the JPEG codec is different, which is related to the version of opencv and how it is installed.

    You can uninstall your opencv (either with pip or conda) and reinstall it using pip (it must be pip, because conda installs a different JPEG codec):

    pip install opencv-python==4.5.5.62​
    
    opened by IDKiro 0
Owner
IDKiro
Stroll in the abyss
IDKiro
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022