A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

Overview

3d-pose-baseline

This is the code for the paper

Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3d human pose estimation. In ICCV, 2017. https://arxiv.org/pdf/1705.03098.pdf.

The code in this repository was mostly written by Julieta Martinez, Rayat Hossain and Javier Romero.

We provide a strong baseline for 3d human pose estimation that also sheds light on the challenges of current approaches. Our model is lightweight and we strive to make our code transparent, compact, and easy-to-understand.

Dependencies

First of all

  1. Watch our video: https://youtu.be/Hmi3Pd9x1BE

  2. Clone this repository

git clone https://github.com/una-dinosauria/3d-pose-baseline.git
cd 3d-pose-baseline
mkdir -p data/h36m/
  1. Get the data

Go to http://vision.imar.ro/human3.6m/, log in, and download the D3 Positions files for subjects [1, 5, 6, 7, 8, 9, 11], and put them under the folder data/h36m. Your directory structure should look like this

src/
README.md
LICENCE
...
data/
  └── h36m/
    ├── Poses_D3_Positions_S1.tgz
    ├── Poses_D3_Positions_S11.tgz
    ├── Poses_D3_Positions_S5.tgz
    ├── Poses_D3_Positions_S6.tgz
    ├── Poses_D3_Positions_S7.tgz
    ├── Poses_D3_Positions_S8.tgz
    └── Poses_D3_Positions_S9.tgz

Now, move to the data folder, and uncompress all the data

cd data/h36m/
for file in *.tgz; do tar -xvzf $file; done

Finally, download the code-v1.2.zip file, unzip it, and copy the metadata.xml file under data/h36m/

Now, your data directory should look like this:

data/
  └── h36m/
    ├── metadata.xml
    ├── S1/
    ├── S11/
    ├── S5/
    ├── S6/
    ├── S7/
    ├── S8/
    └── S9/

There is one little fix we need to run for the data to have consistent names:

mv h36m/S1/MyPoseFeatures/D3_Positions/TakingPhoto.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/Photo.cdf

mv h36m/S1/MyPoseFeatures/D3_Positions/TakingPhoto\ 1.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/Photo\ 1.cdf

mv h36m/S1/MyPoseFeatures/D3_Positions/WalkingDog.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/WalkDog.cdf

mv h36m/S1/MyPoseFeatures/D3_Positions/WalkingDog\ 1.cdf \
   h36m/S1/MyPoseFeatures/D3_Positions/WalkDog\ 1.cdf

And you are done!

Please note that we are currently not supporting SH detections anymore, only training from GT 2d detections is possible now.

Quick demo

For a quick demo, you can train for one epoch and visualize the results. To train, run

python src/predict_3dpose.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --epochs 1

This should take about <5 minutes to complete on a GTX 1080, and give you around 56 mm of error on the test set.

Now, to visualize the results, simply run

python src/predict_3dpose.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --epochs 1 --sample --load 24371

This will produce a visualization similar to this:

Visualization example

Training

To train a model with clean 2d detections, run:

python src/predict_3dpose.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise

This corresponds to Table 2, bottom row. Ours (GT detections) (MA)

Citing

If you use our code, please cite our work

@inproceedings{martinez_2017_3dbaseline,
  title={A simple yet effective baseline for 3d human pose estimation},
  author={Martinez, Julieta and Hossain, Rayat and Romero, Javier and Little, James J.},
  booktitle={ICCV},
  year={2017}
}

Other implementations

Extensions

License

MIT

Owner
Julieta Martinez
Not affiliated with the University of Toronto
Julieta Martinez
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022