Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Overview

Osborne Mine, Australia - Airborne total-field magnetic anomaly

This is a section of a survey acquired in 1990 by the Queensland Government, Australia. The data are good quality with approximately 80 m terrain clearance and 200 m line spacing. The anomalies are very visible and present interesting processing and modelling challenges, as well as plenty of literature about their geology.

Total field magnetic anomaly data and the flight height.

Summary
File osborne-magnetic.csv.xz
Size 2.2 Mb
Version v1
DOI https://doi.org/10.5281/zenodo.5882209
License CC-BY
MD5 md5:b26777bdde2f1ecb97dda655c8b1cf71
SHA256 sha256:12d4fc2c98c71a71ab5bbe5d9a82dd263bdbf30643ccf7832cbfec6249d40ded
Source Geophysical Acquisition & Processing Section 2019. MIM Data from Mt Isa Inlier, QLD (P1029), magnetic line data, AWAGS levelled. Geoscience Australia, Canberra. http://pid.geoscience.gov.au/dataset/ga/142419
Original license CC-BY
Processing code prepare.ipynb

Changes made

These are the changes made to the original dataset.

  • Change the horizontal datum from GDA94 to WGS84.
  • Convert terrain clearance to flight height using an SRTM grid.
  • Keep only the coordinates, AWAGS leveled magnetic anomaly, and flight line ID.
  • Cut to a smaller region containing only the 2 anomalies of interest.

Useful references

For prior interpretations and geological context:

About this repository

This is a place to format and prepare the original dataset for use in our tutorials and documentation.

We include the source code that prepares the datasets for redistribution by filtering, standardizing, converting coordinates, compressing, etc. The goal is to make loading the data as easy as possible (e.g., a single call to pandas.read_csv or xarray.load_dataset). Whenever possible, the code also downloads the original data (otherwise the original data are included in this repository).

πŸ’‘ Tip: The easiest way to download this dataset is using Pooch, particularly to download straight from the DOI of a release.

Contributing

See our Contributing Guidelines for information on proposing new datasets and making changes to this repository.

License

All Python source code is made available under the BSD 3-clause license. You can freely use and modify the code, without warranty, so long as you provide attribution to the authors.

Unless otherwise specified, all data files and figures created by the code are available under the Creative Commons Attribution 4.0 License (CC-BY).

See LICENSE.txt for the full text of each license.

The license for the original data is specified in this README.md file.

You might also like...
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

A Python library created to assist programmers with complex mathematical functions
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers.

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

Autonomous Perception: 3D Object Detection with Complex-YOLO
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

Releases(v1)
  • v1(Jan 20, 2022)

    Date: 2022/01/20

    DOI: https://doi.org/10.5281/zenodo.5882209

    Note: This is a processed and formatted version of the source dataset below. It's meant for use in documentation and tutorials of the Fatiando a Terra project. Please cite the original authors when using this dataset.

    Data source: Geophysical Acquisition & Processing Section 2019. MIM Data from Mt Isa Inlier, QLD (P1029), magnetic line data, AWAGS levelled. Geoscience Australia, Canberra. http://pid.geoscience.gov.au/dataset/ga/142419

    Changes:

    • πŸŽ‰ First release of the curated version of the Osborne Mine aeromagnetic data.

    | | Checksums | |--:|:--| | MD5 | md5:b26777bdde2f1ecb97dda655c8b1cf71 | | SHA256 | sha256:12d4fc2c98c71a71ab5bbe5d9a82dd263bdbf30643ccf7832cbfec6249d40ded |

    Source code(tar.gz)
    Source code(zip)
    osborne-magnetic.csv.xz(2.11 MB)
Owner
Fatiando a Terra Datasets
FAIR sample datasets for use in the Fatiando a Terra project
Fatiando a Terra Datasets
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [ηŸ₯乎/Zhihu] [δΈ­ζ–‡README] [a

Zhining Liu 176 Jan 04, 2023
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
πŸ₯‡Samsung AI Challenge 2021 1λ“± μ†”λ£¨μ…˜μž…λ‹ˆλ‹€πŸ₯‡

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el Γ‘mbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el Γ‘mb

AndrΓ©s Milla 12 Aug 04, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022