Serving PyTorch 1.0 Models as a Web Server in C++

Overview

Serving PyTorch Models in C++

  • This repository contains various examples to perform inference using PyTorch C++ API.
  • Run git clone https://github.com/Wizaron/pytorch-cpp-inference in order to clone this repository.

Environment

  1. Dockerfiles can be found at docker directory. There are two dockerfiles; one for cpu and the other for cuda10. In order to build docker image, you should go to docker/cpu or docker/cuda10 directory and run docker build -t <docker-image-name> ..
  2. After creation of the docker image, you should create a docker container via docker run -v <directory-that-this-repository-resides>:<target-directory-in-docker-container> -p 8181:8181 -it <docker-image-name> (We will use 8181 to serve our PyTorch C++ model).
  3. Inside docker container, go to the directory that this repository resides.
  4. Download libtorch from PyTorch Website (CPU : https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-1.3.1%2Bcpu.zip - CUDA10 : https://download.pytorch.org/libtorch/cu101/libtorch-cxx11-abi-shared-with-deps-1.3.1.zip).
  5. Unzip libtorch via unzip. This will create libtorch directory that contains torch shared libraries and headers.

Code Structure

  • models directory stores PyTorch models.
  • libtorch directory stores C++ torch headers and shared libraries to link the model against PyTorch.
  • utils directory stores various utility function to perform inference in C++.
  • inference-cpp directory stores codes to perform inference.

Exporting PyTorch ScriptModule

  • In order to export torch.jit.ScriptModule of ResNet18 to perform C++ inference, go to models/resnet directory and run python3 resnet.py. It will download pretrained ResNet18 model on ImageNet and create models/resnet_model_cpu.pth and (optionally) models/resnet_model_gpu.pth which we will use in C++ inference.

Serving the C++ Model

  • We can either serve the model as a single executable or as a web server.

Single Executable

  • In order to build a single executable for inference:
    1. Go to inference-cpp/cnn-classification directory.
    2. Run ./build.sh in order to build executable, named as predict.
    3. Run the executable via ./predict <path-to-image> <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}>.
    4. Example: ./predict image.jpeg ../../models/resnet/resnet_model_cpu.pth ../../models/resnet/labels.txt false

Web Server

  • In order to build a web server for production:
    1. Go to inference-cpp/cnn-classification/server directory.
    2. Run ./build.sh in order to build web server, named as predict.
    3. Run the binary via ./predict <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}> (It will serve the model on http://localhost:8181/predict).
    4. Example: ./predict ../../../models/resnet/resnet_model_cpu.pth ../../../models/resnet/labels.txt false
    5. In order to make a request, open a new tab and run python test_api.py (It will make a request to localhost:8181/predict).

Acknowledgement

  1. pytorch
  2. crow
  3. tensorflow_cpp_object_detection_web_server
Owner
Onur Kaplan
Onur Kaplan
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023