Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

Related tags

Deep LearningCloudAAE
Overview

CloudAAE

This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds"

Files

  1. log: directory to store log files during training.
  2. losses: loss functions for training.
  3. models: a python file defining model structure.
  4. object_model_tfrecord: full object models for data synthesizing and visualization purpose.
  5. tf_ops: tensorflow implementation of sampling operations (credit: Haoqiang Fan, Charles R. Qi).
  6. trained_network: a trained network.
  7. utils: utility files for defining model structure.
  8. ycb_video_data_tfRecords: synthetic training data and real test data for the YCB video dataset.
  9. evaluate_cloudAAE_ycbv.py: script for testing object 6d pose estimation with a trained network on test set in YCB video dataset.
  10. train_cloudAAE_ycbv.py: script for training a network on synthetic data for YCB objects.

Requirements

Test a trained network

  1. Testing data in tfrecord format is available
  • Download zip file
  • Unzip and place all files in ycb_video_data_tfRecords/test_real/
  1. After activate tensorflow
python evaluate_cloudAAE_ycbv.py --trained_model trained_network/20200908-204328/model.ckpt --batch_size 1 --target_cls 0
  • --trained_model: directory to trained model (*.ckpt).
  • --batch_size: 1.
  • --target_class: target class for pose estimation.
  • Translation prediction is in unit meter.
  • Rotation prediction is in axis-angle format.
  1. Result
  • If you turn on visualization with b_visual=True, you will see the following displays which are partially observed point cloud segments (red) overlaid with object model (green) with pose estimates. The reconstructed point cloud is also presented (blue).
  • The coordinate is the object coordinate, object segment is viewed in the camera coordinate

Train a network

  1. Training data is created synthetically using 3D object model and 6D poses.
  • The 6D pose and class id of target object are in ycb_video_data_tfRecords/train_syn/
  • The data synthesis pipeline takes the target 3D object model and creates a segment of the object in the desired 6D pose. Below is two examples of synthetic segment (red), two real segments (red) are also shown for comparison.

  1. Run script
python train_cloudAAE_ycbv.py
  1. Log files and trained model is store in log

Citation

If you use this code in an academic context, please consider cite the paper:

BiBTeX:

@inproceedings{gao2020cloudpose,
      title={CloudAAE: Learning 6D Object Pose Regression with On-line Data
Synthesis on Point Clouds},
      author={G. Gao, M. Lauri, X. Hu, J. Zhang and S. Frintrop},
      booktitle={ICRA},
      year={2021}
    }

Link to Paper

TBA

Acknowledgement

Owner
Gee
I like point cloud.
Gee
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022