Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

Related tags

Deep LearningCloudAAE
Overview

CloudAAE

This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds"

Files

  1. log: directory to store log files during training.
  2. losses: loss functions for training.
  3. models: a python file defining model structure.
  4. object_model_tfrecord: full object models for data synthesizing and visualization purpose.
  5. tf_ops: tensorflow implementation of sampling operations (credit: Haoqiang Fan, Charles R. Qi).
  6. trained_network: a trained network.
  7. utils: utility files for defining model structure.
  8. ycb_video_data_tfRecords: synthetic training data and real test data for the YCB video dataset.
  9. evaluate_cloudAAE_ycbv.py: script for testing object 6d pose estimation with a trained network on test set in YCB video dataset.
  10. train_cloudAAE_ycbv.py: script for training a network on synthetic data for YCB objects.

Requirements

Test a trained network

  1. Testing data in tfrecord format is available
  • Download zip file
  • Unzip and place all files in ycb_video_data_tfRecords/test_real/
  1. After activate tensorflow
python evaluate_cloudAAE_ycbv.py --trained_model trained_network/20200908-204328/model.ckpt --batch_size 1 --target_cls 0
  • --trained_model: directory to trained model (*.ckpt).
  • --batch_size: 1.
  • --target_class: target class for pose estimation.
  • Translation prediction is in unit meter.
  • Rotation prediction is in axis-angle format.
  1. Result
  • If you turn on visualization with b_visual=True, you will see the following displays which are partially observed point cloud segments (red) overlaid with object model (green) with pose estimates. The reconstructed point cloud is also presented (blue).
  • The coordinate is the object coordinate, object segment is viewed in the camera coordinate

Train a network

  1. Training data is created synthetically using 3D object model and 6D poses.
  • The 6D pose and class id of target object are in ycb_video_data_tfRecords/train_syn/
  • The data synthesis pipeline takes the target 3D object model and creates a segment of the object in the desired 6D pose. Below is two examples of synthetic segment (red), two real segments (red) are also shown for comparison.

  1. Run script
python train_cloudAAE_ycbv.py
  1. Log files and trained model is store in log

Citation

If you use this code in an academic context, please consider cite the paper:

BiBTeX:

@inproceedings{gao2020cloudpose,
      title={CloudAAE: Learning 6D Object Pose Regression with On-line Data
Synthesis on Point Clouds},
      author={G. Gao, M. Lauri, X. Hu, J. Zhang and S. Frintrop},
      booktitle={ICRA},
      year={2021}
    }

Link to Paper

TBA

Acknowledgement

Owner
Gee
I like point cloud.
Gee
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022