Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Overview

Kaggle-Happywhale

Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588)

竞赛方案思路

  1. 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集与测试集数据裁剪出背鳍或者身体部分;
  2. 背鳍图片特征提取模型:将训练集数据划分为训练与验证两部分,训练 EfficientNet_B6 / EfficientNet_V2_L / NFNet_L2 (backone)三个模型,并且都加上了GeM Pooling 和 Arcface 损失函数,有效增强类内紧凑度和类间分离度;
  3. 聚类与排序:利用最终训练完成的backone模型分别提取训练集与测试集的嵌入特征,所有模型都会输出一个512维的Embedding,将这些特征 concatenated 后获得了一个 512×9=4608 维的特征向量,将训练集的嵌入特征融合后训练KNN模型,然后推断测试集嵌入特征距离,排序获取top5类别,作为预测结果,最后使用new_individual替换进行后处理,得到了top2%的成绩。

Model

class HappyWhaleModel(nn.Module):
    def __init__(self, model_name, embedding_size, pretrained=True):
        super(HappyWhaleModel, self).__init__()
        self.model = timm.create_model(model_name, pretrained=pretrained) 

        if 'efficientnet' in model_name:
            in_features = self.model.classifier.in_features
            self.model.classifier = nn.Identity()
            self.model.global_pool = nn.Identity()
        elif 'nfnet' in model_name:
            in_features = self.model.head.fc.in_features
            self.model.head.fc = nn.Identity()
            self.model.head.global_pool = nn.Identity()

        self.pooling = GeM() 
        self.embedding = nn.Sequential(
                            nn.BatchNorm1d(in_features),
                            nn.Linear(in_features, embedding_size)
                            )
        # arcface
        self.fc = ArcMarginProduct(embedding_size,
                                   CONFIG["num_classes"], 
                                   s=CONFIG["s"],
                                   m=CONFIG["m"], 
                                   easy_margin=CONFIG["easy_margin"], 
                                   ls_eps=CONFIG["ls_eps"]) 

    def forward(self, images, labels):
        features = self.model(images)  
        pooled_features = self.pooling(features).flatten(1)
        embedding = self.embedding(pooled_features) # embedding
        output = self.fc(embedding, labels) # arcface
        return output
    
    def extract(self, images):
        features = self.model(images) 
        pooled_features = self.pooling(features).flatten(1)
        embedding = self.embedding(pooled_features) # embedding
        return embedding

ArcFace

# Arcface
class ArcMarginProduct(nn.Module):
    r"""Implement of large margin arc distance: :
        Args:
            in_features: size of each input sample
            out_features: size of each output sample
            s: norm of input feature
            m: margin
            cos(theta + m)
        """
    def __init__(self, in_features, out_features, s=30.0, 
                 m=0.50, easy_margin=False, ls_eps=0.0):
        super(ArcMarginProduct, self).__init__()
        self.in_features = in_features 
        self.out_features = out_features 
        self.s = s
        self.m = m 
        self.ls_eps = ls_eps 
        self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
        nn.init.xavier_uniform_(self.weight)

        self.easy_margin = easy_margin
        self.cos_m = math.cos(m) # cos margin
        self.sin_m = math.sin(m) # sin margin
        self.threshold = math.cos(math.pi - m) # cos(pi - m) = -cos(m)
        self.mm = math.sin(math.pi - m) * m # sin(pi - m)*m = sin(m)*m

    def forward(self, input, label):
        # --------------------------- cos(theta) & phi(theta) ---------------------
        cosine = F.linear(F.normalize(input), F.normalize(self.weight)) 
        sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) 
        phi = cosine * self.cos_m - sine * self.sin_m # cosθ*cosm – sinθ*sinm = cos(θ + m)
        phi = phi.float() # phi to float
        cosine = cosine.float() # cosine to float
        if self.easy_margin:
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            # if cos(θ) > cos(pi - m) means θ + m < math.pi, so phi = cos(θ + m);
            # else means θ + m >= math.pi, we use Talyer extension to approximate the cos(θ + m).
            # if fact, cos(θ + m) = cos(θ) - m * sin(θ) >= cos(θ) - m * sin(math.pi - m)
            phi = torch.where(cosine > self.threshold, phi, cosine - self.mm)
            
        # https://github.com/ronghuaiyang/arcface-pytorch/issues/48
        # --------------------------- convert label to one-hot ---------------------
        # one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
        one_hot = torch.zeros(cosine.size(), device=CONFIG['device'])
        one_hot.scatter_(1, label.view(-1, 1).long(), 1)
        # label smoothing
        if self.ls_eps > 0:
            one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features
        # -------------torch.where(out_i = {x_i if condition_i else y_i) ------------
        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)  
        output *= self.s

        return output

冲榜历程

  1. 使用Yolov5切分 fullbody数据 和 backfins数据;
  2. 使用小模型tf_efficientnet_b0_ns + ArcFace 作为 Baseline,训练fullbody 512size, 使用kNN 搜寻,搭建初步的pipeline,Public LB : 0.729;
  3. 加入new_individual后处理,Public LB : 0.742;
  4. 使用fullbody 768size图像,并调整了数据增强, Public LB : 0.770;
  5. 训练 tf_efficientnet_b6_ns ,以及上述所有功能微调,Public LB:0.832;
  6. 训练 tf_efficientnetv2_l_in21k,以及上述所有功能微调,Public LB:0.843;
  7. 训练 eca_nfnet_l2,以及上述所有功能微调,Public LB:0.854;
  8. 将上述三个模型的5Fold,挑选cv高的,进行融合,Public LB:0.858;

代码、数据集

  • 代码

    • Happywhale_crop_image.ipynb # 裁切fullbody数据和backfin数据
    • Happywhale_train.ipynb # 训练代码 (最低要求GPU显存不小于12G)
    • Happywhale_infernce.ipynb # 推理代码以及kNN计算和后处理
  • 数据集

写在后面

感谢我的队友徐哥和他的3090们 🤣

Owner
Franxx
Franxx
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022