Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Overview

Adversarial Reciprocal Points Learning for Open Set Recognition

Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition".

1. Requirements

Environments

Currently, requires following packages

  • python 3.6+
  • torch 1.4+
  • torchvision 0.5+
  • CUDA 10.1+
  • scikit-learn 0.22+

Datasets

For Tiny-ImageNet, please download the following datasets to ./data/tiny_imagenet.

2. Training & Evaluation

Open Set Recognition

To train open set recognition models in paper, run this command:

python osr.py --dataset <DATASET> --loss <LOSS>

Option --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/svhn/cifar10/cifar100/tiny_imagenet. To run ARPL+CS, add --cs after this command.

Out-of-Distribution Detection

To train out-of-distribution models in paper, run this command:

python ood.py --dataset <DATASET> --out-dataset <DATASET> --model <NETWORK> --loss <LOSS>

Option --out-dataset denotes the out-of-distribution dataset for evaluation. --loss can be one of ARPLoss/RPLoss/GCPLoss/Softmax. --dataset is one of mnist/cifar10. --out-dataset is one of kmnist/svhn/cifar100. To run ARPL+CS, add --cs after this command.

Evaluation

To evaluate the trained model for Open Set Classification Rate (OSCR) and Out-of-Distribution (OOD) detection setting, add --eval after the training command.

3. Results

We visualize the deep feature of Softmax/GCPL/ARPL/ARPL+CS as below.

Colored triangles represent the learned reciprocal points of different known classes.

4. PKU-AIR300

A new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). It contains 320,000 annotated colour images from 300 different classes in total. Each category contains 100 images at least, and a maximum of 10,000 images, which leads to the long tail distribution.

Citation

  • If you find our work or the code useful, please consider cite our paper using:
@inproceedings{chen2021adversarial,
    title={Adversarial Reciprocal Points Learning for Open Set Recognition},
    author={Chen, Guangyao and Peng, Peixi and Wang, Xiangqian and Tian, Yonghong},
    journal={arXiv preprint arXiv:2103.00953},
    year={2021}
}
  • All publications using Air-300 Dataset should cite the paper below:
@InProceedings{chen_2020_ECCV,
    author = {Chen, Guangyao and Qiao, Limeng and Shi, Yemin and Peng, Peixi and Li, Jia and Huang, Tiejun and Pu, Shiliang and Tian, Yonghong},
    title = {Learning Open Set Network with Discriminative Reciprocal Points},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {August},
    year = {2020}
}
Owner
Guangyao Chen
Ph.D student @ PKU
Guangyao Chen
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! đź‘‹ This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022