This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Related tags

Deep LearningDTLN-aec
Overview

DTLN-aec

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation in TF-lite format. This model was handed in to the acoustic echo cancellation challenge (AEC-Challenge) organized by Microsoft. The DTLN-aec model is among the top-five models of the challenge. The results of the AEC-Challenge can be found here.

The model was trained on data from the DNS-Challenge and the AEC-Challenge reposetories.

The arXiv preprint can be found here.

@article{westhausen2020acoustic,
  title={Acoustic echo cancellation with the dual-signal transformation LSTM network},
  author={Westhausen, Nils L. and Meyer, Bernd T.},
  journal={arXiv preprint arXiv:2010.14337},
  year={2020}
}

Author: Nils L. Westhausen (Communication Acoustics , Carl von Ossietzky University, Oldenburg, Germany)

This code is licensed under the terms of the MIT license.


Contents:

This repository contains three prtrained models of different size:

  • dtln_aec_128 (model with 128 LSTM units per layer, 1.8M parameters)
  • dtln_aec_256 (model with 256 LSTM units per layer, 3.9M parameters)
  • dtln_aec_512 (model with 512 LSTM units per layer, 10.4M parameters)

The dtln_aec_512 was handed in to the challenge.


Usage:

First install the depencies from requirements.txt

Afterwards the model can be tested with:

$ python run_aec.py -i /folder/with/input/files -o /target/folder/ -m ./pretrained_models/dtln_aec_512

Files for testing can be found in the AEC-Challenge respository. The convention for file names is *_mic.wav for the near-end microphone signals and *_lpb.wav for the far-end microphone or loopback signals. The folder audio_samples contains one audio sample for each condition. The *_processed.wav files are created by the dtln_aec_512 model.


This repository is still under construction.

Owner
Nils L. Westhausen
PhD candidate at the Communication Acoustics group at the University of Oldenburg. Working on speech enhancement and separation.
Nils L. Westhausen
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023