Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Overview

RingNet

alt text

This is an official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision. The project was formerly referred by RingNet. The codebase consists of the inference code, i.e. give an face image using this code one can generate a 3D mesh of a complete head with the face region. For further details on the method please refer to the following publication,

Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
Soubhik Sanyal, Timo Bolkart, Haiwen Feng, Michael J. Black
CVPR 2019

More details on our NoW benchmark dataset, 3D face reconstruction challenge can be found in our project page. A pdf preprint is also available on the project page.

  • Update: We have released the evaluation code for NoW Benchmark challenge here.

  • Update: Add demo to build a texture for the reconstructed mesh from the input image.

  • Update: NoW Dataset is divided into Test set and Validation Set. Ground Truth scans are available for the Validation Set. Please Check our project page for more details.

  • Update: We have released a PyTorch implementation of the decoder FLAME with dynamic conture loading which can be directly used for training networks. Please check FLAME_PyTorch for the code.

Installation

The code uses Python 2.7 and it is tested on Tensorflow gpu version 1.12.0, with CUDA-9.0 and cuDNN-7.3.

Setup RingNet Virtual Environment

virtualenv --no-site-packages 
   
    /.virtualenvs/RingNet
source 
    
     /.virtualenvs/RingNet/bin/activate
pip install --upgrade pip==19.1.1

    
   

Clone the project and install requirements

git clone https://github.com/soubhiksanyal/RingNet.git
cd RingNet
pip install -r requirements.txt
pip install opendr==0.77
mkdir model

Install mesh processing libraries from MPI-IS/mesh. (This now only works with python 3, so donot install it)

  • Update: Please install the following fork for working with the mesh processing libraries with python 2.7

Download models

  • Download pretrained RingNet weights from the project website, downloads page. Copy this inside the model folder
  • Download FLAME 2019 model from here. Copy it inside the flame_model folder. This step is optional and only required if you want to use the output Flame parameters to play with the 3D mesh, i.e., to neutralize the pose and expression and only using the shape as a template for other methods like VOCA (Voice Operated Character Animation).
  • Download the FLAME_texture_data and unpack this into the flame_model folder.

Demo

RingNet requires a loose crop of the face in the image. We provide two sample images in the input_images folder which are taken from CelebA Dataset.

Output predicted mesh rendering

Run the following command from the terminal to check the predictions of RingNet

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output

Provide the image path and it will output the predictions in ./RingNet_output/images/.

Output predicted mesh

If you want the output mesh then run the following command

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output --save_obj_file=True

It will save a *.obj file of the predicted mesh in ./RingNet_output/mesh/.

Output textured mesh

If you want the output the predicted mesh with the image projected onto the mesh as texture then run the following command

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output --save_texture=True

It will save a *.obj, *.mtl, and *.png file of the predicted mesh in ./RingNet_output/texture/.

Output FLAME and camera parameters

If you want the predicted FLAME and camera parameters then run the following command

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output --save_obj_file=True --save_flame_parameters=True

It will save a *.npy file of the predicted flame and camera parameters and in ./RingNet_output/params/.

Generate VOCA templates

If you want to play with the 3D mesh, i.e. neutralize pose and expression of the 3D mesh to use it as a template in VOCA (Voice Operated Character Animation), run the following command

python -m demo --img_path ./input_images/000013.jpg --out_folder ./RingNet_output --save_obj_file=True --save_flame_parameters=True --neutralize_expression=True

License

Free for non-commercial and scientific research purposes. By using this code, you acknowledge that you have read the license terms (https://ringnet.is.tue.mpg.de/license.html), understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not use the code. For commercial use please check the website (https://ringnet.is.tue.mpg.de/license.html).

Referencing RingNet

Please cite the following paper if you use the code directly or indirectly in your research/projects.

@inproceedings{RingNet:CVPR:2019,
title = {Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision},
author = {Sanyal, Soubhik and Bolkart, Timo and Feng, Haiwen and Black, Michael},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
month = jun,
year = {2019},
month_numeric = {6}
}

Contact

If you have any questions you can contact us at [email protected] and [email protected].

Acknowledgement

  • We thank Ahmed Osman for his support in the tensorflow implementation of FLAME.
  • We thank Raffi Enficiaud and Ahmed Osman for pushing the release of psbody.mesh.
  • We thank Benjamin Pellkofer and Jonathan Williams for helping with our RingNet project website.
Owner
Soubhik Sanyal
Currently Applied Scientist at Amazon Research PhD Student
Soubhik Sanyal
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022