Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

Overview

HAABSAStar

Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://github.com/ofwallaart/HAABSA and https://github.com/mtrusca/HAABSA_PLUS_PLUS.

All software is written in PYTHON3 (https://www.python.org/) and makes use of the TensorFlow framework (https://www.tensorflow.org/).

Installation Instructions (Windows):

Dowload required files and add them to data/externalData folder:

  1. Download ontology: https://github.com/KSchouten/Heracles/tree/master/src/main/resources/externalData
  2. Download SemEval2015 Datasets: http://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools
  3. Download SemEval2016 Dataset: http://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools
  4. Download Glove Embeddings: http://nlp.stanford.edu/data/glove.42B.300d.zip
  5. Download Stanford CoreNLP parser: https://nlp.stanford.edu/software/stanford-parser-full-2018-02-27.zip
  6. Download Stanford CoreNLP Language models: https://nlp.stanford.edu/software/stanford-english-corenlp-2018-02-27-models.jar

Setup Environment

  1. Install chocolatey (a package manager for Windows): https://chocolatey.org/install
  2. Open a command prompt.
  3. Install python3 by running the following command: code(choco install python) (http://docs.python-guide.org/en/latest/starting/install3/win/).
  4. Make sure that pip is installed and use pip to install the following packages: setuptools and virtualenv (http://docs.python-guide.org/en/latest/dev/virtualenvs/#virtualenvironments-ref).
  5. Create a virtual environemnt in a desired location by running the following command: code(virtualenv ENV_NAME)
  6. Direct to the virtual environment source directory.
  7. Unzip the zip file of this GitHub repository in the virtual environment directrory.
  8. Activate the virtual environment by the following command: 'code(Scripts\activate.bat)`.
  9. Install the required packages from the requirements.txt file by running the following command: code(pip install -r requirements.txt).
  10. Install the required space language pack by running the following command: code(python -m spacy download en)

Note: the files BERT768embedding2015.txt and BERT768embedding2016.txt are too large for GitHub. These can be generated using getBERTusingColab.py.

Configure paths

The following scripts contain file paths to adapt to your computer (this is done by adding the path to you virtual environment before the filename. For example "/path/to/venv"+"data/programGeneratedData/GloVetraindata"): main_cross.py, main_hyper.py, config.py, HyperDataMaker.py, adversarial.py.

Run Software

  1. Configure one of the three main files to the required configuration (main.py, main_cross.py, main_hyper.py)
  2. Run the program from the command line by the following command: code(python PROGRAM_TO_RUN.py) (where PROGRAM_TO_RUN is main/main_cross/main_hyper)

Software explanation:

The environment contains the following main files that can be run: main.py, main_cross.py, main_hyper.py

  • main.py: program to run single in-sample and out-of-sample valdition runs. Each method can be activated by setting its corresponding boolean to True e.g. to run the Adversarial method set runAdversarial= True.

  • main_cross.py: similar to main.py but runs a 10-fold cross validation procedure for each method.

  • main_hyper.py: program that is able to do hyperparameter optimzation for a given space of hyperparamters for each method. To change a method change the objective and space parameters in the run_a_trial() function.

  • config.py: contains parameter configurations that can be changed such as: dataset_year, batch_size, iterations.

  • dataReader2016.py, loadData.py: files used to read in the raw data and transform them to the required formats to be used by one of the algorithms

  • lcrModel.py: Tensorflow implementation for the LCR-Rot algorithm

  • lcrModelAlt.py: Tensorflow implementation for the LCR-Rot-hop algorithm

  • lcrModelInverse.py: Tensorflow implementation for the LCR-Rot-inv algorithm

  • cabascModel.py: Tensorflow implementation for the CABASC algorithm

  • OntologyReasoner.py: PYTHON implementation for the ontology reasoner

  • svmModel.py: PYTHON implementation for a BoW model using a SVM.

  • adversarial.py: Tensorflow implementation of adversarial training for LCR-Rot-hop

  • att_layer.py, nn_layer.py, utils.py: programs that declare additional functions used by the machine learning algorithms.

Directory explanation:

The following directories are necessary for the virtual environment setup: __pycache, \Include, \Lib, \Scripts, \tcl, \venv

  • cross_results_2015: Results for a k-fold cross validation process for the SemEval-2015 dataset
  • cross_results_2016: Results for a k-fold cross validation process for the SemEval-2015 dataset
  • Results_Run_Adversarial: If WriteFile = True, a csv with accuracies per iteration is saved here
  • data:
    • externalData: Location for the external data required by the methods
    • programGeneratedData: Location for preprocessed data that is generated by the programs
  • hyper_results: Contains the stored results for hyperparameter optimzation for each method
  • results: temporary store location for the hyperopt package

Changed files with respect to https://github.com/mtrusca/HAABSA_PLUS_PLUS:

  • main.py
  • main_hyper.py
  • main_cross.py
  • config.py
  • adversarial.py (added)
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022