IMBENS: class-imbalanced ensemble learning in Python.

Overview

IMBENS: class-imbalanced ensemble learning in Python.

Documentation Status

Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [็ŸฅไนŽ/Zhihu] [ไธญๆ–‡README] [arXiv]

Paper: IMBENS: Ensemble Class-imbalanced Learning in Python

imbalanced-ensemble (IMBENS, imported as imbalanced_ensemble) is a Python toolbox for quick implementation, modification, evaluation, and visualization of ensemble learning algorithms for class-imbalanced data. The problem of learning from imbalanced data is known as imbalanced learning or long-tail learning (under multi-class scenario). See related papers/libraries/resources here.

Currently (v0.1), IMBENS includes more than 15 ensemble imbalanced learning algorithms, from the classical SMOTEBoost (2003), RUSBoost (2010) to recent SPE (2020), from resampling to cost-sensitive learning. More algorithms will be included in the future. We also provide detailed documentation and examples across various algorithms. See full list of implemented methods here.

IMBENS is featured for:

  • ๐ŸŽ Unified, easy-to-use APIs, detailed documentation and examples.
  • ๐ŸŽ Capable for out-of-the-box multi-class imbalanced (long-tailed) learning.
  • ๐ŸŽ Optimized performance with parallelization when possible using joblib.
  • ๐ŸŽ Powerful, customizable, interactive training logging and visualizer.
  • ๐ŸŽ Full compatibility with other popular packages like scikit-learn and imbalanced-learn.

API Demo:

# Train an SPE classifier
from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
clf = SelfPacedEnsembleClassifier(random_state=42)
clf.fit(X_train, y_train)

# Predict with an SPE classifier
y_pred = clf.predict(X_test)

Table of Contents

Citing us

If you find IMBENS helpful in your work or research, please consider citing our work. We would greatly appreciate citations to the following paper [PDF]:

@article{liu2021imbens,
  title={IMBENS: Ensemble Class-imbalanced Learning in Python},
  author={Liu, Zhining and Wei, Zhepei and Yu, Erxin and Huang, Qiang and Guo, Kai and Yu, Boyang and Cai, Zhaonian and Ye, Hangting and Cao, Wei and Bian, Jiang and Wei, Pengfei and Jiang, Jing and Chang, Yi},
  journal={arXiv preprint arXiv:2111.12776},
  year={2021}
}

Installation

It is recommended to use pip for installation.
Please make sure the latest version is installed to avoid potential problems:

$ pip install imbalanced-ensemble            # normal install
$ pip install --upgrade imbalanced-ensemble  # update if needed

Or you can install imbalanced-ensemble by clone this repository:

$ git clone https://github.com/ZhiningLiu1998/imbalanced-ensemble.git
$ cd imbalanced-ensemble
$ pip install .

imbalanced-ensemble requires following dependencies:

Highlights

  • ๐ŸŽ Unified, easy-to-use API design.
    All ensemble learning methods implemented in IMBENS share a unified API design. Similar to sklearn, all methods have functions (e.g., fit(), predict(), predict_proba()) that allow users to deploy them with only a few lines of code.
  • ๐ŸŽ Extended functionalities, wider application scenarios.
    All methods in IMBENS are ready for multi-class imbalanced classification. We extend binary ensemble imbalanced learning methods to get them to work under the multi-class scenario. Additionally, for supported methods, we provide more training options like class-wise resampling control, balancing scheduler during the ensemble training process, etc.
  • ๐ŸŽ Detailed training log, quick intuitive visualization.
    We provide additional parameters (e.g., eval_datasets, eval_metrics, training_verbose) in fit() for users to control the information they want to monitor during the ensemble training. We also implement an EnsembleVisualizer to quickly visualize the ensemble estimator(s) for providing further information/conducting comparison. See an example here.
  • ๐ŸŽ Wide compatiblilty.
    IMBENS is designed to be compatible with scikit-learn (sklearn) and also other compatible projects like imbalanced-learn. Therefore, users can take advantage of various utilities from the sklearn community for data processing/cross-validation/hyper-parameter tuning, etc.

List of implemented methods

Currently (v0.1.3, 2021/06), 16 ensemble imbalanced learning methods were implemented:
(Click to jump to the document page)

Note: imbalanced-ensemble is still under development, please see API reference for the latest list.

5-min Quick Start with IMBENS

Here, we provide some quick guides to help you get started with IMBENS.
We strongly encourage users to check out the example gallery for more comprehensive usage examples, which demonstrate many advanced features of IMBENS.

A minimal working example

Taking self-paced ensemble [1] as an example, it only requires less than 10 lines of code to deploy it:

>>> from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> 
>>> X, y = make_classification(n_samples=1000, n_classes=3,
...                            n_informative=4, weights=[0.2, 0.3, 0.5],
...                            random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...                            X, y, test_size=0.2, random_state=42)
>>> clf = SelfPacedEnsembleClassifier(random_state=0)
>>> clf.fit(X_train, y_train)
SelfPacedEnsembleClassifier(...)
>>> clf.predict(X_test)  
array([...])

Visualize ensemble classifiers

The imbalanced_ensemble.visualizer sub-module provide an ImbalancedEnsembleVisualizer. It can be used to visualize the ensemble estimator(s) for further information or comparison. Please refer to visualizer documentation and examples for more details.

Fit an ImbalancedEnsembleVisualizer

from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
from imbalanced_ensemble.ensemble import RUSBoostClassifier
from imbalanced_ensemble.ensemble import EasyEnsembleClassifier
from sklearn.tree import DecisionTreeClassifier

# Fit ensemble classifiers
init_kwargs = {'base_estimator': DecisionTreeClassifier()}
ensembles = {
    'spe': SelfPacedEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
    'rusboost': RUSBoostClassifier(**init_kwargs).fit(X_train, y_train),
    'easyens': EasyEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
}

# Fit visualizer
from imbalanced_ensemble.visualizer import ImbalancedEnsembleVisualizer
visualizer = ImbalancedEnsembleVisualizer().fit(ensembles=ensembles)

Plot performance curves

fig, axes = visualizer.performance_lineplot()

Plot confusion matrices

fig, axes = visualizer.confusion_matrix_heatmap()

Customizing training log

All ensemble classifiers in IMBENS support customizable training logging. The training log is controlled by 3 parameters eval_datasets, eval_metrics, and training_verbose of the fit() method. Read more details in the fit documentation.

Enable auto training log

clf.fit(..., train_verbose=True)
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ                          โ”ƒ            Data: train             โ”ƒ
โ”ƒ #Estimators โ”ƒ    Class Distribution    โ”ƒ               Metric               โ”ƒ
โ”ƒ             โ”ƒ                          โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.838      0.877          0.839    โ”ƒ
โ”ƒ      5      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.924      0.949          0.924    โ”ƒ
โ”ƒ     10      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.954      0.970          0.954    โ”ƒ
โ”ƒ     15      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.979      0.986          0.979    โ”ƒ
โ”ƒ     20      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.990      0.993          0.990    โ”ƒ
โ”ƒ     25      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.994      0.996          0.994    โ”ƒ
โ”ƒ     30      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.988      0.992          0.988    โ”ƒ
โ”ƒ     35      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.999      0.999          0.999    โ”ƒ
โ”ƒ     40      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.995      0.997          0.995    โ”ƒ
โ”ƒ     45      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.995      0.997          0.995    โ”ƒ
โ”ƒ     50      โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.993      0.995          0.993    โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ {0: 150, 1: 150, 2: 150} โ”ƒ 0.993      0.995          0.993    โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

Customize granularity and content of the training log

clf.fit(..., 
        train_verbose={
            'granularity': 10,
            'print_distribution': False,
            'print_metrics': True,
        })
Click to view example output
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ            Data: train             โ”ƒ
โ”ƒ #Estimators โ”ƒ               Metric               โ”ƒ
โ”ƒ             โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ 0.964      0.970          0.964    โ”ƒ
โ”ƒ     10      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     20      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     30      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     40      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ƒ     50      โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ 1.000      1.000          1.000    โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

Add evaluation dataset(s)

  clf.fit(..., 
          eval_datasets={
              'valid': (X_valid, y_valid)
          })
Click to view example output
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ            Data: train             โ”ƒ            Data: valid             โ”ƒ
โ”ƒ #Estimators โ”ƒ               Metric               โ”ƒ               Metric               โ”ƒ
โ”ƒ             โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ  acc    balanced_acc   weighted_f1 โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ 0.939      0.961          0.940    โ”ƒ 0.935      0.933          0.936    โ”ƒ
โ”ƒ     10      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.971      0.974          0.971    โ”ƒ
โ”ƒ     20      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.982      0.981          0.982    โ”ƒ
โ”ƒ     30      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.983          0.983    โ”ƒ
โ”ƒ     40      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.982          0.983    โ”ƒ
โ”ƒ     50      โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.982          0.983    โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ 1.000      1.000          1.000    โ”ƒ 0.983      0.982          0.983    โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

Customize evaluation metric(s)

from sklearn.metrics import accuracy_score, f1_score
clf.fit(..., 
        eval_metrics={
            'acc': (accuracy_score, {}),
            'weighted_f1': (f1_score, {'average':'weighted'}),
        })
Click to view example output
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ             โ”ƒ     Data: train      โ”ƒ     Data: valid      โ”ƒ
โ”ƒ #Estimators โ”ƒ        Metric        โ”ƒ        Metric        โ”ƒ
โ”ƒ             โ”ƒ  acc    weighted_f1  โ”ƒ  acc    weighted_f1  โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ      1      โ”ƒ 0.942      0.961     โ”ƒ 0.919      0.936     โ”ƒ
โ”ƒ     10      โ”ƒ 1.000      1.000     โ”ƒ 0.976      0.976     โ”ƒ
โ”ƒ     20      โ”ƒ 1.000      1.000     โ”ƒ 0.977      0.977     โ”ƒ
โ”ƒ     30      โ”ƒ 1.000      1.000     โ”ƒ 0.981      0.980     โ”ƒ
โ”ƒ     40      โ”ƒ 1.000      1.000     โ”ƒ 0.980      0.979     โ”ƒ
โ”ƒ     50      โ”ƒ 1.000      1.000     โ”ƒ 0.981      0.980     โ”ƒ
โ”ฃโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‹โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ซ
โ”ƒ    final    โ”ƒ 1.000      1.000     โ”ƒ 0.981      0.980     โ”ƒ
โ”—โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ปโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”›

About imbalanced learning

Class-imbalance (also known as the long-tail problem) is the fact that the classes are not represented equally in a classification problem, which is quite common in practice. For instance, fraud detection, prediction of rare adverse drug reactions and prediction gene families. Failure to account for the class imbalance often causes inaccurate and decreased predictive performance of many classification algorithms. Imbalanced learning aims to tackle the class imbalance problem to learn an unbiased model from imbalanced data.

For more resources on imbalanced learning, please refer to awesome-imbalanced-learning.

Acknowledgements

Many samplers and utilities are adapted from imbalanced-learn, which is an amazing project!

References

# Reference
[1] Zhining Liu, Wei Cao, Zhifeng Gao, Jiang Bian, Hechang Chen, Yi Chang, and Tie-Yan Liu. 2019. Self-paced Ensemble for Highly Imbalanced Massive Data Classification. 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 841-852.
[2] X.-Y. Liu, J. Wu, and Z.-H. Zhou, Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539โ€“550, 2009.
[3] Chen, Chao, Andy Liaw, and Leo Breiman. โ€œUsing random forest to learn imbalanced data.โ€ University of California, Berkeley 110 (2004): 1-12.
[4] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, Rusboost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 1, pp. 185โ€“197, 2010.
[5] Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. AAAI/IAAI, 1997, 546-551.
[6] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, Smoteboost: Improving prediction of the minority class in boosting. in European conference on principles of data mining and knowledge discovery. Springer, 2003, pp. 107โ€“119
[7] S. Wang and X. Yao, Diversity analysis on imbalanced data sets by using ensemble models. in 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2009, pp. 324โ€“331.
[8] Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999, June). AdaCost: misclassification cost-sensitive boosting. In Icml (Vol. 99, pp. 97-105).
[9] Shawe-Taylor, G. K. J., & Karakoulas, G. (1999). Optimizing classifiers for imbalanced training sets. Advances in neural information processing systems, 11(11), 253.
[10] Viola, P., & Jones, M. (2001). Fast and robust classification using asymmetric adaboost and a detector cascade. Advances in Neural Information Processing System, 14.
[11] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
[12] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
[13] Guillaume Lemaรฎtre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1โ€“5, 2017.
You might also like...
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

 An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Neural Ensemble Search for Performant and Calibrated Predictions
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algorithms that do the job in the least jargon possible and examples to guide you through every step of the way.

Comments
  • Bug :AttributeError: can't set attribute

    Bug :AttributeError: can't set attribute

    hello ,when i use the code as follow,the will be some errors, EasyEnsembleClassifier was used

    from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import balanced_accuracy_score from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from imbalanced_ensemble.ensemble import EasyEnsembleClassifier from collections import Counter

    X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) print('Original dataset shape %s' % Counter(y))

    Original dataset shape Counter({{1: 900, 0: 100}})

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) bbc = EasyEnsembleClassifier(random_state=42) bbc.fit(X_train, y_train) EasyEnsembleClassifier(...) y_pred = bbc.predict(X_test) print(y_pred)

    Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/pythonProject5/test-easy.py", line 16, in bbc.fit(X_train, y_train) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\utils_validation.py", line 602, in inner_f return f(**kwargs) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\ensemble\under_sampling\easy_ensemble.py", line 275, in fit return self._fit(X, y, File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\utils_validation.py", line 602, in inner_f return f(**kwargs) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\ensemble_bagging.py", line 359, in fit n_samples, self.n_features = X.shape AttributeError: can't set attribute

    bug 
    opened by leaphan 8
  • EasyEnsembleClassifier็”จไธไบ†ไบ†

    EasyEnsembleClassifier็”จไธไบ†ไบ†

    ๆ นๆฎไฝ ็š„ๅœจ่ฟ™ๅ„ฟhttps://imbalanced-ensemble.readthedocs.io/en/latest/auto_examples/classification/plot_digits.html ็š„ไปฃ็ ๏ผŒๅฐ†ๅˆ†็ฑปๅ™จๆ”นๆˆEasyEnsembleClassifierๅฏไปฅๅค็Žฐ่ฟ™ไธช้—ฎ้ข˜๏ผŒไผšๅ‡บ็Žฐ๏ผš image AttributeError: can't set attribute่ฟ™ไธช้—ฎ้ข˜ใ€‚

    bug 
    opened by hannanhtang 7
  • ENH add early_termination control for boosting-based methods

    ENH add early_termination control for boosting-based methods

    The early termination in sklearn.ensemble.AdaBoostClassifier may be too strict under certain scenarios (only 1 base classifier is trained), which greatly hinders the performance of boosting-based ensemble imbalanced learning methods.

    It should make more sense to add a parameter that allows the user to decide whether to enable strict early termination.

    enhancement 
    opened by ZhiningLiu1998 2
  • [BUG] Bagging-based methods do not work with base clf that do not support sample_weight

    [BUG] Bagging-based methods do not work with base clf that do not support sample_weight

    Resampling + Bagging clf (e.g., OverBagging) raises error when used with base estimators that do not support sample_weight (e.g., sklearn.KNeighborsClassifier).

    opened by ZhiningLiu1998 2
Owner
Zhining Liu
M.Sc. student at Jilin University.
Zhining Liu
JupyterLite demo deployed to GitHub Pages ๐Ÿš€

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. โœจ Try it in your browser โœจ โžก๏ธ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd ๐Ÿ“Š Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction ์ด repo๋Š” pose estimation์„ ์—ฐ๊ตฌํ•˜๊ณ  ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๊ธฐ

Kim Junho 1 Dec 22, 2021
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenbergโ€“Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR โ€“ EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023