As-ViT: Auto-scaling Vision Transformers without Training

Overview

As-ViT: Auto-scaling Vision Transformers without Training [PDF]

MIT licensed

Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou

In ICLR 2022.

Note: We implemented topology search (sec. 3.3) and scaling (sec. 3.4) in this code base in PyTorch. Our training code is based on Tensorflow and Keras on TPU, which will be released soon.

Overview

We present As-ViT, a framework that unifies the automatic architecture design and scaling for ViT (vision transformer), in a training-free strategy.

Highlights:

  • Trainig-free ViT Architecture Design: we design a "seed" ViT topology by leveraging a training-free search process. This extremely fast search is fulfilled by our comprehensive study of ViT's network complexity (length distorsion), yielding a strong Kendall-tau correlation with ground-truth accuracies.
  • Trainig-free ViT Architecture Scaling: starting from the "seed" topology, we automate the scaling rule for ViTs by growing widths/depths to different ViT layers. This will generate a series of architectures with different numbers of parameters in a single run.
  • Efficient ViT Training via Progressive Tokenization: we observe that ViTs can tolerate coarse tokenization in early training stages, and further propose to train ViTs faster and cheaper with a progressive tokenization strategy.

teaser
Left: Length Distortion shows a strong correlation with ViT's accuracy. Middle: Auto scaling rule of As-ViT. Right: Progressive re-tokenization for efficient ViT training.

Prerequisites

  • Ubuntu 18.04
  • Python 3.6.9
  • CUDA 11.0 (lower versions may work but were not tested)
  • NVIDIA GPU + CuDNN v7.6

This repository has been tested on V100 GPU. Configurations may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/VITA-Grou/AsViT.git
cd AsViT
  • Install dependencies:
pip install -r requirements.txt

1. Seed As-ViT Topology Search

CUDA_VISIBLE_DEVICES=0 python ./search/reinforce.py --save_dir ./output/REINFORCE-imagenet --data_path /path/to/imagenet

This job will return you a seed topology. For example, our search seed topology is 8,2,3|4,1,2|4,1,4|4,1,6|32, which can be explained as below:

Stage1 Stage2 Stage3 Stage4 Head
Kernel K1 Split S1 Expansion E1 Kernel K2 Split S2 Expansion E2 Kernel K3 Split S3 Expansion E3 Kernel K4 Split S4 Expansion E4
8 2 3 4 1 2 4 1 4 4 1 6 32

2. Scaling

CUDA_VISIBLE_DEVICES=0 python ./search/grow.py --save_dir ./output/GROW-imagenet \
--arch "[arch]" --data_path /path/to/imagenet

Here [arch] is the seed topology (output from step 1 above). This job will return you a series of topologies. For example, our largest topology (As-ViT Large) is 8,2,3,5|4,1,2,2|4,1,4,5|4,1,6,2|32,180, which can be explained as below:

Stage1 Stage2 Stage3 Stage4 Head Initial Hidden Size
Kernel K1 Split S1 Expansion E1 Layers L1 Kernel K2 Split S2 Expansion E2 Layers L2 Kernel K3 Split S3 Expansion E3 Layers L3 Kernel K4 Split S4 Expansion E4 Layers L4
8 2 3 5 4 1 2 2 4 1 4 5 4 1 6 2 32 180

3. Evaluation

Tensorflow and Keras code for training on TPU. To be released soon.

Citation

@inproceedings{chen2021asvit,
  title={Auto-scaling Vision Transformers without Training},
  author={Chen, Wuyang and Huang, Wei and Du, Xianzhi and Song, Xiaodan and Wang, Zhangyang and Zhou, Denny},
  booktitle={International Conference on Learning Representations},
  year={2022}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022