Asymmetric metric learning for knowledge transfer

Related tags

Deep Learningaml
Overview

Asymmetric metric learning

This is the official code that enables the reproduction of the results from our paper:

Asymmetric metric learning for knowledge transfer, Budnik M., Avrithis Y. [arXiv]

Content

This repository provides the means to train and test all the models presented in the paper. This includes:

  1. Code to train the models with and without the teacher (asymmetric and symmetric).
  2. Code to do symmetric and asymmetric testing on rOxford and rParis datasets.
  3. Best pre-trainend models (including whitening).

Dependencies

  1. Python3 (tested on version 3.6)
  2. Numpy 1.19
  3. PyTorch (tested on version 1.4.0)
  4. Datasets and base models will be downloaded automatically.

Training and testing the networks

To train a model use the following script:

python main.py [-h] [--training-dataset DATASET] [--directory EXPORT_DIR] [--no-val]
                  [--test-datasets DATASETS] [--test-whiten DATASET]
                  [--val-freq N] [--save-freq N] [--arch ARCH] [--pool POOL]
                  [--local-whitening] [--regional] [--whitening]
                  [--not-pretrained] [--loss LOSS] [--loss-margin LM] 
                  [--mode MODE] [--teacher TEACHER] [--sym]
                  [--feat-path FEAT] [--feat-val-path FEATVAL]
                  [--image-size N] [--neg-num N] [--query-size N]
                  [--pool-size N] [--gpu-id N] [--workers N] [--epochs N]
                  [--batch-size N] [--optimizer OPTIMIZER] [--lr LR]
                  [--momentum M] [--weight-decay W] [--print-freq N]
                  [--resume FILENAME] [--comment COMMENT] 
                  

Most parameters are the same as in CNN Image Retrieval in PyTorch. Here, we describe parameters added or modified in this work, namely:
--arch - architecture of the model to be trained, in our case the student.
--mode - is the training mode, which determines how the dataset is handled, e.g. are the tuples constructed randomly or with mining; which examples are coming from the teacher vs student, etc. So for example while the --loss is set to 'contrastive', 'ts' enables standard student-teacher training (includes mining), 'ts_self' trains using the Contr+ approach, 'reg' uses the regression. When using 'rand' or 'reg' no mining is used. With 'std' it follows the original training protocol from here (the teacher model is not used).
--teacher - the model of the teacher(vgg16 or resnet101), note that this param makes the last layer of the student match that of the teacher. Therefore, this can be used even in a standard symmetric training.
--sym - a flag that indicates if the training should be symmetric or asymmetric.
--feat-path and --feat-val-path - a path to the extracted teacher features used to train the student. The features can be extracted using the extract_features.py script.

To perform a symmetric test of the model that is already trained:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER]

For the asymmetric testing:

python test.py [-h] (--network-path NETWORK | --network-offtheshelf NETWORK)
               [--datasets DATASETS] [--image-size N] [--multiscale MULTISCALE] 
               [--whitening WHITENING] [--teacher TEACHER] [--asym]

Examples:

Perform a symmetric test with a pre-trained model:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16

For an asymmetric test:

python test.py -npath  mobilenet-v2-gem-contr-vgg16 -d 'roxford5k,rparis6k' -ms '[1, 1/2**(1/2), 1/2]' -w retrieval-SfM-120k --teacher vgg16 --asym

If you are interested in just the trained models, you can find the links to them in the test.py file.

Acknowledgements

This code is adapted and modified based on the amazing repository by F. Radenović called CNN Image Retrieval in PyTorch: Training and evaluating CNNs for Image Retrieval in PyTorch

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022