Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Overview

Neural Magic Eye

Preprint | Project Page | Colab Runtime

Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Understand the Scene Behind an Autostereogram", arXiv:2012.15692.

An autostereogram, a.k.a. magic eye image, is a single-image stereogram that can create visual illusions of 3D scenes from 2D textures. This paper studies an interesting question that whether a deep CNN can be trained to recover the depth behind an autostereogram and understand its content. The key to the autostereogram magic lies in the stereopsis - to solve such a problem, a model has to learn to discover and estimate disparity from the quasi-periodic textures. We show that deep CNNs embedded with disparity convolution, a novel convolutional layer proposed in this paper that simulates stereopsis and encodes disparity, can nicely solve such a problem after being sufficiently trained on a large 3D object dataset in a self-supervised fashion. We refer to our method as "NeuralMagicEye". Experiments show that our method can accurately recover the depth behind autostereograms with rich details and gradient smoothness. Experiments also show the completely different working mechanisms for autostereogram perception between neural networks and human eyes. We hope this research can help people with visual impairments and those who have trouble viewing autostereograms.

In this repository, we provide the complete training/inference implementation of our paper based on Pytorch and provide several demos that can be used for reproducing the results reported in our paper. With the code, you can also try on your own data by following the instructions below.

The implementation of the UNet architecture in our code is partially adapted from the project pytorch-CycleGAN-and-pix2pix.

License

See the LICENSE file for license rights and limitations (MIT).

One-min video result

IMAGE ALT TEXT HERE

Requirements

See Requirements.txt.

Setup

  1. Clone this repo:
git clone https://github.com/jiupinjia/neural-magic-eye.git 
cd neural-magic-eye
  1. Download our pretrained autostereogram decoding network from the Google Drive, and unzip them to the repo directory.
unzip checkpoints_decode_sp_u256_bn_df.zip

To reproduce our results

Decoding autostereograms

python demo_decode_image.py --in_folder ./test_images --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df

Decoding autostereograms (animated)

  • Stanford Bunny

python demo_decode_animated.py --in_file ./test_videos/bunny.mp4 --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df
  • Stanford Armadillo

python demo_decode_animated.py --in_file ./test_videos/bunny.mp4 --out_folder ./decode_output --net_G unet_256 --norm_type batch --with_disparity_conv --in_size 256 --checkpoint_dir ./checkpoints_decode_sp_u256_bn_df

Google Colab

Here we also provide a minimal working example of the inference runtime of our method. Check out this link and see your result on Colab.

To retrain your decoding/classification model

If you want to retrain our model, or want to try a different network configuration, you will first need to download our experimental dataset and then unzip it to the repo directory.

unzip datasets.zip

Note that to build the training pipeline, you will need a set of depth images and background textures, which are already there included in our pre-processed dataset (see folders ./dataset/ShapeNetCore.v2 and ./dataset/Textures for more details). The autostereograms will be generated on the fly during the training process.

In the following, we provide several examples for training our decoding/classification models with different configurations. Particularly, if you are interested in exploring different network architectures, you can check out --net_G , --norm_type , --with_disparity_conv and --with_skip_connection for more details.

To train the decoding network (on mnist dataset, unet_64 + bn, without disparity_conv)

python train_decoder.py --dataset mnist --net_G unet_64 --in_size 64 --batch_size 32 --norm_type batch --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the decoding network (on shapenet dataset, resnet18 + in + disparity_conv + fpn)

python train_decoder.py --dataset shapenet --net_G resnet18fcn --in_size 128 --batch_size 32 --norm_type instance --with_disparity_conv --with_skip_connection --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the watermark decoding model (unet256 + bn + disparity_conv)

python train_decoder.py --dataset watermarking --net_G unet_256 --in_size 256 --batch_size 16 --norm_type batch --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the classification network (on mnist dataset, resnet18 + in + disparity_conv)

python train_classifier.py --dataset mnist --net_G resnet18 --in_size 64 --batch_size 32 --norm_type instance --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

To train the classification network (on shapenet dataset, resnet18 + bn + disparity_conv)

python train_classifier.py --dataset shapenet --net_G resnet18 --in_size 64 --batch_size 32 --norm_type batch --with_disparity_conv --checkpoint_dir ./checkpoints_your_model_name_here --vis_dir ./val_out_your_model_name_here

Network architectures and performance

In the following, we show the decoding/classification accuracy with different model architectures. We hope these statistics can help you if you want to build your own model.

Citation

If you use our code for your research, please cite the following paper:

@misc{zou2020neuralmagiceye,
      title={NeuralMagicEye: Learning to See and Understand the Scene Behind an Autostereogram}, 
      author={Zhengxia Zou and Tianyang Shi and Yi Yuan and Zhenwei Shi},
      year={2020},
      eprint={2012.15692},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022