GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

Overview

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model

This repository is the official PyTorch implementation of GraphRNN, a graph generative model using auto-regressive model.

Jiaxuan You*, Rex Ying*, Xiang Ren, William L. Hamilton, Jure Leskovec, GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model (ICML 2018)

Installation

Install PyTorch following the instuctions on the official website. The code has been tested over PyTorch 0.2.0 and 0.4.0 versions.

conda install pytorch torchvision cuda90 -c pytorch

Then install the other dependencies.

pip install -r requirements.txt

Test run

python main.py

Code description

For the GraphRNN model: main.py is the main executable file, and specific arguments are set in args.py. train.py includes training iterations and calls model.py and data.py create_graphs.py is where we prepare target graph datasets.

For baseline models:

  • B-A and E-R models are implemented in baselines/baseline_simple.py.
  • Kronecker graph model is implemented in the SNAP software, which can be found in https://github.com/snap-stanford/snap/tree/master/examples/krongen (for generating Kronecker graphs), and https://github.com/snap-stanford/snap/tree/master/examples/kronfit (for learning parameters for the model).
  • MMSB is implemented using the EDWARD library (http://edwardlib.org/), and is located in baselines.
  • We implemented the DeepGMG model based on the instructions of their paper in main_DeepGMG.py.
  • We implemented the GraphVAE model based on the instructions of their paper in baselines/graphvae.

Parameter setting: To adjust the hyper-parameter and input arguments to the model, modify the fields of args.py accordingly. For example, args.cuda controls which GPU is used to train the model, and args.graph_type specifies which dataset is used to train the generative model. See the documentation in args.py for more detailed descriptions of all fields.

Outputs

There are several different types of outputs, each saved into a different directory under a path prefix. The path prefix is set at args.dir_input. Suppose that this field is set to ./:

  • ./graphs contains the pickle files of training, test and generated graphs. Each contains a list of networkx object.
  • ./eval_results contains the evaluation of MMD scores in txt format.
  • ./model_save stores the model checkpoints
  • ./nll saves the log-likelihood for generated graphs as sequences.
  • ./figures is used to save visualizations (see Visualization of graphs section).

Evaluation

The evaluation is done in evaluate.py, where user can choose which settings to evaluate. To evaluate how close the generated graphs are to the ground truth set, we use MMD (maximum mean discrepancy) to calculate the divergence between two sets of distributions related to the ground truth and generated graphs. Three types of distributions are chosen: degree distribution, clustering coefficient distribution. Both of which are implemented in eval/stats.py, using multiprocessing python module. One can easily extend the evaluation to compute MMD for other distribution of graphs.

We also compute the orbit counts for each graph, represented as a high-dimensional data point. We then compute the MMD between the two sets of sampled points using ORCA (see http://www.biolab.si/supp/orca/orca.html) at eval/orca. One first needs to compile ORCA by

g++ -O2 -std=c++11 -o orca orca.cpp` 

in directory eval/orca. (the binary file already in repo works in Ubuntu).

To evaluate, run

python evaluate.py

Arguments specific to evaluation is specified in class evaluate.Args_evaluate. Note that the field Args_evaluate.dataset_name_all must only contain datasets that are already trained, by setting args.graph_type to each of the datasets and running python main.py.

Visualization of graphs

The training, testing and generated graphs are saved at 'graphs/'. One can visualize the generated graph using the function utils.load_graph_list, which loads the list of graphs from the pickle file, and util.draw_graph_list, which plots the graph using networkx.

Misc

Jesse Bettencourt and Harris Chan have made a great slide introducing GraphRNN in Prof. David Duvenaud’s seminar course Learning Discrete Latent Structure.

Owner
Jiaxuan
Jiaxuan
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022