Neural Ensemble Search for Performant and Calibrated Predictions

Related tags

Deep Learningnes
Overview

Neural Ensemble Search

Introduction

This repo contains the code accompanying the paper:

Neural Ensemble Search for Performant and Calibrated Predictions

Authors: Sheheryar Zaidi*, Arber Zela*, Thomas Elsken, Chris Holmes, Frank Hutter and Yee Whye Teh.

The paper introduces two NES algorithms for finding ensembles with varying baselearner architectures with the aim of producing performant and calibrated predictions for both in-distribution data and during distributional shift.

The code, as provided here, makes use of the SLURM job scheduler, however, one should be able to make changes to run the code without SLURM.

News: Oral presentation at the Uncertainty & Robustness in Deep Learning (UDL) Workshop @ ICML 2020

Setting up virtual environment

First, clone and cd to the root of repo:

git clone https://github.com/automl/nes.git
cd nes

We used Python 3.6 and PyTorch 1.3.1 with CUDA 10.0 (see requirements.txt) for running our experiments. For reproducibility, we recommend using these python and CUDA versions. To set up the virtual environment execute the following (python points to Python 3.6):

python -m venv venv

Then, activate the environment using:

source venv/bin/activate

Now install requirements.txt packages by:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

Generating the CIFAR-10-C dataset

To run the experiments on CIFAR-10-C (Hendrycks and Dietterich, ICLR 2019), first generate the shifted data. Begin by downloading the CIFAR-10 dataset by executing the following command:

python -c "import torchvision.datasets as dset; dset.CIFAR10(\"data\", train=True, download=True)"

Next, run the cluster_scripts/generate_corrupted.sh script to generate the shifted data using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/generate_corrupted.sh

$GPU_CLUSTER_PARTITION is the name of the cluster partition you want to submit the array job to.

To run this without SLURM, use the following command which runs sequentially rather than in parallel:

for i in 0..18; do PYTHONPATH=$PWD python data/generate_corrupted.py $i; done

Running the experiments

The structure for running the two Neural Ensemble Search (NES) algorithms, NES-RS and NES-RE consists of three steps: train the base learners, apply ensemble selection and evaluate the final ensembles. We compared to three deep ensemble baselines: DeepEns (RS), DeepEns (DARTS) and DeepEns(AmoebaNet). The latter two simply require training the baselearners and evaluating the ensemble. For DeepEns (RS), we require an extra intermediate step of picking the "incumbent" architecture (i.e. best architecture by validation loss) from a randomly sampled pool of architectures. For a fair and efficient comparison, we use the same randomly sampled (and trained) pool of architectures used by NES-RS.

Running NES

We describe how to run NES algorithms for CIFAR-10-C using the scripts in cluster_scripts/cifar10/; for Fashion-MNIST, proceed similarly but using the scripts in cluster_scripts/fmnist/. For NES algorithms, we first train the base learners in parallel by the commands:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_rs.sh (NES-RS)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_re.sh (NES-RE)

These scripts will run the NES search for 400 iterations using the same hyperparameters as described in the paper to build the pools of base learners. All baselearners (trained network parameters, predictions across all severity levels, etc.) will be saved in experiments/cifar10/baselearners/ (experiments/fmnist/baselearners/ for Fashion-MNIST).

Next, we perform ensemble selection given the pools built by NES-RS and NES-RE using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/ensembles_from_pools.sh

We will return to the final step of ensemble evaluation.

Running Deep Ensemble Baselines

To run the deep ensemble baselines DeepEns (AmoebaNet) and DeepEns (DARTS), we first train the base learners in parallel using the scripts:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_amoeba.sh (DeepEns-AmoebaNet)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_darts.sh (DeepEns-DARTS)

These will train the DARTS and AmoebaNet architectures with different random initializations and save the results again in experiments/cifar10/baselearners/.

To run DeepEns-RS, we first have to extract the incumbent architectures from the random sample produced by the NES-RS run above. For that, run:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/get_incumbents_rs.sh

which saves incumbent architecture ids in experiments/cifar10/outputs/deepens_rs/incumbents.txt. Then run the following loop to train multiple random initializations of each of the incumbent architectures:

for arch_id in $(cat < experiments/cifar10/outputs/deepens_rs/incumbents.txt); do sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_rs.sh $arch_id; done

Evaluating the Ensembles

When all the runs above are complete, all base learners are trained, and we can evaluate all the ensembles (on in-distribution and shifted data). To do that, run the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/evaluate_ensembles.sh

Plotting the results

Finally, after all the aforementioned steps have been completed, we plot the results by running:

bash cluster_scripts/cifar10/plot_data.sh

This will save the plots in experiments/cifar10/outputs/plots.

Figures from the paper

Results on Fashion-MNIST: Loss fmnist

NES with Regularized Evolution: nes-re

For more details, please refer to the original paper.

Citation

@article{zaidi20,
  author  = {Sheheryar Zaidi and Arber Zela and Thomas Elsken and Chris Holmes and Frank Hutter and Yee Whye Teh},
  title   = {{Neural} {Ensemble} {Search} for {Performant} and {Calibrated} {Predictions}},
  journal = {arXiv:2006.08573 {cs.LG}},
  year    = {2020},
  month   = jun,
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021