Multi-angle c(q)uestion answering

Related tags

Deep Learningmacaw
Overview

Macaw

Introduction

Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside the domains it was trained on. It has been trained in "multi-angle" fashion, which means it can handle a flexible set of input and output "slots" (like question, answer, explanation) .

Macaw was built on top of T5 and comes in different sizes: macaw-11b, macaw-3b, and macaw-large, as well as an answer-focused version featured on various leaderboards: macaw-answer-11b (see below).

Examples

Some suggestive examples from the Macaw (11B) model, for different angles:

  • (Q→A) Given a question, what's the answer?
    Q: James went camping in the woods, but forgot to bring a hammer to bang the tent pegs in. What else might he use?
    → A: rocks

  • (QM→A) Given a question and answer choices, what's the answer?
    Q: James went camping in the woods, but forgot to bring a hammer to bang the tent pegs in. What else might he use?
    M: (A) a leaf (B) a log (C) a worm
    → A: a log

  • (Q→AE) Given a question, what's the answer and an explanation?
    Q: Which force pulls objects to the ground?
    → A: gravity
    → E: Gravitational force causes objects that have mass to be pulled down on a planet.

  • (A→QE) Given an answer, what's a plausible question and explanation?
    A: elephant
    → Q: Which animal has the largest ears?
    → E: The ears of an elephant are the largest.

  • (C→QA) Given a context, what's a plausible question and answer?
    C: A car needs a battery to start.
    → Q: What is required for a car to start?
    → A: battery

For many more examples of the basic Q→A angle, see examples.md.

Usage examples

Macaw can easily be used in the Hugging Face transformers library, as shown here for the smallest model (the smallest model is not generally recommended, but has much smaller footprint), where given a question we want to return an answer and suggested multiple-choice answer options.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("allenai/macaw-large")
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/macaw-large")
input_string = "$answer$ ; $mcoptions$ ; $question$ = What is the color of a cloudy sky?"
input_ids = tokenizer.encode(input_string, return_tensors="pt")
output = model.generate(input_ids, max_length=200)

>>> tokenizer.batch_decode(output, skip_special_tokens=True)
['$answer$ = gray ; $mcoptions$ = (A) blue (B) white (C) grey (D) white']

(run pip install -r requirements.txt if any dependencies are missing). Note there's no guarantee the different slots are fully coherent, as in gray/grey (and duplicate "white") here, more so for the macaw-large model vs the larger ones.

The code in macaw/utils.py includes some convenience wrappers, such as load_model and run_macaw, here are some examples loading the macaw-11b model onto two GPUs (need around 48GB total GPU memory for the largest model to work):

from macaw.utils import load_model, run_macaw
model_dict = load_model("allenai/macaw-11b", cuda_devices=[0,1])
res1 = run_macaw("Q: Which force pulls objects to the ground?\nA\nE", model_dict)
# Alternate input syntax
res2 = run_macaw({"Q:":"Which force causes a compass needle to point north?", "A":""}, model_dict)
# Add sampling options for the output
res3 = run_macaw("Q: Which force pulls objects to the ground?\nA\nE", model_dict, {"do_sample": True, "temperature": 2.0})

>>> [print(res["output_slots_list"][0]) for res in [res1, res2, res3]]
{'answer': 'gravity', 'explanation': 'Gravitational force causes objects that have mass to be pulled down on a planet.'}
{'answer': 'magnetism'}
{'answer': 'gravitional force', 'explanation': 'Gravitational force causes objects that have mass to be pulled down on a planet.'}

For batch evaluation of instances at various angles, see macaw/batch_eval.py for pointers.

Supported slots

Here are the slots available in Macaw, generally applicable for both input and output:

Slot name Description Example
question (Q) Question text What is the color of a cloudy sky?
answer (A) Answer text The sky is blue
mcoptions (M) Multiple-choice answer options (A) blue (B) white (C) grey
context (C) Potentially relevant context (noisy IR) The sky looks blue to us because...
explanation (E) Sentences explaining the answer A cloudy sky is usually gray in color...

An angle is a specific set of input/output slots, for instance QM->AE is the task of producing answer and explanation, given a question and multiple-choice options. Macaw is trained on a wide variety of angles and handles unseen angles as well, one exception is that the context (C) only appears as an input slot in the training data.

The Challenge300 dataset of probing questions

The Challenge300 dataset of 300 diverse probing examples can be found in challenge300-probes-v1.jsonl. The basic Q→A output from Macaw (at different sizes), as well as outputs from GPT3, Jurassic-1 and alternate T5 models trained on NaturalQuestions, can be seen in examples.md.

Demo

See DEMO.md for instructions and code to host an interactive version of Macaw.

Training data

Macaw was trained in two steps from the text-to-text transformer model T5:

  1. Multi-angle version of UnifiedQA by fine-tuning T5 on the following 7 datasets and associated angles:

  2. Further fine-tuning of Multi-Angle UnifiedQA on multiple-choice and direct-answer elementary science questions, along with (up to 5) explanation sentences from WorldTreeV2:

    • ARC: QMC→AE, AQC→M, QMEC→A, QME→A, QE→A, QMC→A, QC→AE, QM→AE, QMAC→E, QMA→E
    • ARC-DA: QC→AE, Q→AE, QC→A, Q→A, QEC→A, QE→A, AE→Q, AC→Q, QA→E, AQC→E
  3. A specialized answer-focused model, macaw-answer-11b (called "UnifiedQA + ARC MC/DA + IR" on the leaderboards for ARC, ARC-Easy, and ARC-DA) was trained on a smaller set of angles, not including explanations:

    • ARC: QMC→A, QAC→M, QC→A, QM→A, MAC→Q, AC→QM, M→QA
    • ARC-DA: QC→A, Q→A, AC→Q, C→QA

Available models

The Macaw models can be accessed from the Hugging Face model hub:

For a sense of the degradation in performance for the smaller sizes, here are baseline scores on the ARC Challenge and ARC Easy multiple-choice development questions. Included are variants with and without IR context from a large science corpus (corresponding to angles QMC→A and QM→A respectively).

Model ARC Challenge ARC Challenge (no IR) ARC Easy ARC Easy (no IR)
Macaw (11B) 76.9 74.6 91.2 84.9
Macaw-3B 68.2 67.9 87.9 77.7
Macaw-large 57.2 50.5 82.5 63.9
Macaw-answer (11B) 79.9 75.2 90.5 85.8

Disclaimer

As a model capable of generating free form text, the output of the model is not guaranteed to be free of offensive material, so appropriate caution is advised when using the model.

Citation

If you use Macaw in your work, please reference the related paper using

@article{Tafjord2021Macaw,
  title={General-Purpose Question-Answering with {M}acaw},
  author={Oyvind Tafjord and Peter Clark},
  journal={ArXiv},
  year={2021},
  volume={abs/2109.02593}
}
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022