Noise Conditional Score Networks (NeurIPS 2019, Oral)

Overview

Generative Modeling by Estimating Gradients of the Data Distribution

This repo contains the official implementation for the NeurIPS 2019 paper Generative Modeling by Estimating Gradients of the Data Distribution,

by Yang Song and Stefano Ermon. Stanford AI Lab.

Note: The method has been greatly stabilized by the subsequent work Improved Techniques for Training Score-Based Generative Models (code) and more recently extended by Score-Based Generative Modeling through Stochastic Differential Equations (code). This codebase is therefore not recommended for new projects anymore.


We describe a new method of generative modeling based on estimating the derivative of the log density function (a.k.a., Stein score) of the data distribution. We first perturb our training data by different Gaussian noise with progressively smaller variances. Next, we estimate the score function for each perturbed data distribution, by training a shared neural network named the Noise Conditional Score Network (NCSN) using score matching. We can directly produce samples from our NSCN with annealed Langevin dynamics.

Dependencies

  • PyTorch

  • PyYAML

  • tqdm

  • pillow

  • tensorboardX

  • seaborn

Running Experiments

Project Structure

main.py is the common gateway to all experiments. Type python main.py --help to get its usage description.

usage: main.py [-h] [--runner RUNNER] [--config CONFIG] [--seed SEED]
               [--run RUN] [--doc DOC] [--comment COMMENT] [--verbose VERBOSE]
               [--test] [--resume_training] [-o IMAGE_FOLDER]

optional arguments:
  -h, --help            show this help message and exit
  --runner RUNNER       The runner to execute
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --run RUN             Path for saving running related data.
  --doc DOC             A string for documentation purpose
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  --test                Whether to test the model
  --resume_training     Whether to resume training
  -o IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The directory of image outputs

There are four runner classes.

  • AnnealRunner The main runner class for experiments related to NCSN and annealed Langevin dynamics.
  • BaselineRunner Compared to AnnealRunner, this one does not anneal the noise. Instead, it uses a single fixed noise variance.
  • ScoreNetRunner This is the runner class for reproducing the experiment of Figure 1 (Middle, Right)
  • ToyRunner This is the runner class for reproducing the experiment of Figure 2 and Figure 3.

Configuration files are stored in configs/. For example, the configuration file of AnnealRunner is configs/anneal.yml. Log files are commonly stored in run/logs/doc_name, and tensorboard files are in run/tensorboard/doc_name. Here doc_name is the value fed to option --doc.

Training

The usage of main.py is quite self-evident. For example, we can train an NCSN by running

python main.py --runner AnnealRunner --config anneal.yml --doc cifar10

Then the model will be trained according to the configuration files in configs/anneal.yml. The log files will be stored in run/logs/cifar10, and the tensorboard logs are in run/tensorboard/cifar10.

Sampling

Suppose the log files are stored in run/logs/cifar10. We can produce samples to folder samples by running

python main.py --runner AnnealRunner --test -o samples

Checkpoints

We provide pretrained checkpoints run.zip. Extract the file to the root folder. You should be able to produce samples like the following using this checkpoint.

Dataset Sampling procedure
MNIST MNIST
CelebA Celeba
CIFAR-10 CIFAR10

Evaluation

Please refer to Appendix B.2 of our paper for details on hyperparameters and model selection. When computing inception and FID scores, we first generate images from our model, and use the official code from OpenAI and the original code from TTUR authors to obtain the scores.

References

Large parts of the code are derived from this Github repo (the official implementation of the sliced score matching paper)

If you find the code / idea inspiring for your research, please consider citing the following

@inproceedings{song2019generative,
  title={Generative Modeling by Estimating Gradients of the Data Distribution},
  author={Song, Yang and Ermon, Stefano},
  booktitle={Advances in Neural Information Processing Systems},
  pages={11895--11907},
  year={2019}
}

and / or

@inproceedings{song2019sliced,
  author    = {Yang Song and
               Sahaj Garg and
               Jiaxin Shi and
               Stefano Ermon},
  title     = {Sliced Score Matching: {A} Scalable Approach to Density and Score
               Estimation},
  booktitle = {Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial
               Intelligence, {UAI} 2019, Tel Aviv, Israel, July 22-25, 2019},
  pages     = {204},
  year      = {2019},
  url       = {http://auai.org/uai2019/proceedings/papers/204.pdf},
}
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022